Intensive Care Medicine

, Volume 34, Issue 7, pp 1216–1223 | Cite as

Elevated pulmonary dead space and coagulation abnormalities suggest lung microvascular thrombosis in patients undergoing cardiac surgery

  • Barry Dixon
  • Duncan J. Campbell
  • John D. Santamaria



Inflammation has been shown to trigger microvascular thrombosis. Patients undergoing cardiac surgery sustain significant inflammatory insults to the lungs and in addition are routinely given anti-fibrinolytic agents to promote thrombosis. In view of these risk factors we investigated if evidence of pulmonary microvascular thrombosis occurs following cardiac surgery and, if so, whether a pre-operative heparin infusion may limit this.


Double-blind randomised controlled trial.


Tertiary university affiliated hospital.


Twenty patients undergoing elective cardiac surgery.


Patients were randomised to receive a pre-operative heparin infusion or placebo. All patients were administered aprotinin.

Measurements and results

Pulmonary microvascular obstruction was estimated by measuring the alveolar dead-space fraction. Pulmonary coagulation activation was estimated by measuring the ratio of prothrombin fragment levels in radial and pulmonary arterial blood. Systemic tissue plasminogen activator (t-PA) levels were also assessed. In the placebo group cardiac surgery triggered increased alveolar dead-space fraction levels and the onset of prothrombin fragment production in the pulmonary circulation. Administration of pre-operative heparin was associated with a lower alveolar dead-space fraction (p < 0.05) and reduced prothrombin fragment production in the pulmonary circulation (p < 0.05). Pre-operative heparin also increased baseline t-PA levels (p < 0.05).


The changes in the alveolar dead-space fraction and pulmonary coagulation activation suggest that pulmonary microvascular thrombosis develops during cardiac surgery and this may be limited by a pre-operative heparin infusion.


Cardiopulmonary bypass Coagulation Fibrinolysis Inflammation Thrombosis 

Supplementary material

134_2008_1042_MOESM1_ESM.doc (46 kb)
Electronic Supplementary Material (DOC 46K)


  1. 1.
    Ng CS, Wan S, Yim AP, Arifi AA (2002) Pulmonary dysfunction after cardiac surgery. Chest 121:1269–1277PubMedCrossRefGoogle Scholar
  2. 2.
    Massoudy P, Zahler S, Becker BF, Braun SL, Barankay A, Meisner H (2001) Evidence for inflammatory responses of the lungs during coronary artery bypass grafting with cardiopulmonary bypass. Chest 119:31–36PubMedCrossRefGoogle Scholar
  3. 3.
    Serraf A, Robotin M, Bonnet N, Detruit H, Baudet B, Mazmanian MG, Herve P, Planche C (1997) Alteration of the neonatal pulmonary physiology after total cardiopulmonary bypass. J Thorac Cardiovasc Surg 114:1061–1069PubMedCrossRefGoogle Scholar
  4. 4.
    Schlensak C, Doenst T, Preusser S, Wunderlich M, Kleinschmidt M, Beyersdorf F (2001) Bronchial artery perfusion during cardiopulmonary bypass does not prevent ischemia of the lung in piglets: assessment of bronchial artery blood flow with fluorescent microspheres. Eur J Cardiothorac Surg 19:326–331PubMedCrossRefGoogle Scholar
  5. 5.
    Chai PJ, Williamson JA, Lodge AJ, Daggett CW, Scarborough JE, Meliones JN, Cheifetz IM, Jaggers JJ, Ungerleider RM (1999) Effects of ischemia on pulmonary dysfunction after cardiopulmonary bypass. Ann Thorac Surg 67:731–735PubMedCrossRefGoogle Scholar
  6. 6.
    Suzuki T, Ito T, Kashima I, Teruya K, Fukuda T (2001) Continuous perfusion of pulmonary arteries during total cardiopulmonary bypass favorably affects levels of circulating adhesion molecules and lung function. J Thorac Cardiovasc Surg 122:242–248PubMedCrossRefGoogle Scholar
  7. 7.
    Wan S, LeClerc JL, Vincent JL (1997) Inflammatory response to cardiopulmonary bypass: mechanisms involved and possible therapeutic strategies. Chest 112:676–692PubMedCrossRefGoogle Scholar
  8. 8.
    Dixon B (2004) The role of microvascular thrombosis in sepsis. Anaesth Intensive Care 32:619–629PubMedGoogle Scholar
  9. 9.
    Sapru A, Wiemels JL, Witte JS, Ware LB, Matthay MA (2006) Acute lung injury and the coagulation pathway: potential role of gene polymorphisms in the protein C and fibrinolytic pathways. Intensive Care Med 32:1293–1303PubMedCrossRefGoogle Scholar
  10. 10.
    Beck G, Habicht GS, Benach JL, Miller F (1986) Interleukin 1: a common endogenous mediator of inflammation and the local Shwartzman reaction. J Immunol 136:3025–3031PubMedGoogle Scholar
  11. 11.
    Dosquet C, Weill D, Wautier JL (1995) Cytokines and thrombosis. J Cardiovasc Pharmacol Suppl 25(2):S13–S19Google Scholar
  12. 12.
    Blume ED, Nelson DP, Gauvreau K, Walsh AZ, Plumb C, Neufeld EJ, Hickey PR, Mayer JE, Newburger JW (1997) Soluble adhesion molecules in infants and children undergoing cardiopulmonary bypass. Circulation 96:II-352–357Google Scholar
  13. 13.
    Massoudy P, Zahler Sea, Becker BF, Braun SL, Barankay A, Richter JA, Meisner H (1999) Significant leukocyte and platelet retention during pulmonary passage after declamping of the aorta in CABG patients. Eur J Med Res 4:178–182PubMedGoogle Scholar
  14. 14.
    Tanaka K (2001) Specific inhibition of thrombin activity during cardiopulmonary bypass reduces ischemia-reperfusion injury of the lung. Fukuoka Igaku Zasshi 92:7–20PubMedGoogle Scholar
  15. 15.
    Okada K, Fujita T, Minamoto K, Liao H, Naka Y, Pinsky DJ (2000) Potentiation of endogenous fibrinolysis and rescue from lung ischemia/reperfusion injury in interleukin (IL)-10-reconstituted IL-10 null mice. J Biol Chem 275:21468–21476PubMedCrossRefGoogle Scholar
  16. 16.
    Pinsky DJ, Liao H, Lawson CA, Yan SF, Chen J, Carmeliet P, Loskutoff DJ, Stern DM (1998) Coordinated induction of plasminogen activator inhibitor-1 (PAI-1) and inhibition of plasminogen activator gene expression by hypoxia promotes pulmonary vascular fibrin deposition. J Clin Invest 102:919–928PubMedCrossRefGoogle Scholar
  17. 17.
    Lawson CA, Yan SD, Yan SF, Liao H, Zhou YS, Sobel J, Kisiel W, Stern DM, Pinsky DJ (1997) Monocytes and tissue factor promote thrombosis in a murine model of oxygen deprivation. J Clin Invest 99:1729–1738PubMedCrossRefGoogle Scholar
  18. 18.
    Argenbright LW, Barton RW (1992) Interactions of leukocyte integrins with intercellular adhesion molecule 1 in the production of inflammatory vascular injury in vivo. The Shwartzman reaction revisited. J Clin Invest 89:259–272PubMedCrossRefGoogle Scholar
  19. 19.
    Mangano DT (2002) Aspirin and mortality from coronary bypass surgery. N Engl J Med 347:1309–1317PubMedCrossRefGoogle Scholar
  20. 20.
    Mangano DT, Tudor IC, Dietzel C (2006) The risk associated with aprotinin in cardiac surgery. N Engl J Med 354:353–365PubMedCrossRefGoogle Scholar
  21. 21.
    Saffitz JE, Stahl DJ, Sundt TM, Wareing TH, Kouchoukos NT (1993) Disseminated intravascular coagulation after administration of aprotinin in combination with deep hypothermic circulatory arrest. Am J Cardiol 72:1080–1082PubMedCrossRefGoogle Scholar
  22. 22.
    Sundt TM III, Kouchoukos NT, Saffitz JE, Murphy SF, Wareing TH, Stahl DJ (1993) Renal dysfunction and intravascular coagulation with aprotinin and hypothermic circulatory arrest. Ann Thorac Surg 55:1418–1424PubMedCrossRefGoogle Scholar
  23. 23.
    Blaisdell FW, Lim RC Jr, Amberg JR, Choy SH, Hall AD, Thomas AN (1966) Pulmonary microembolism. A cause of morbidity and death after major vascular surgery. Arch Surg 93:776–786PubMedGoogle Scholar
  24. 24.
    Gregoric ID, Patel V, Radovancevic R, Bracey AW, Radovancevic B, Frazier OH (2005) Pulmonary microthrombi during left ventricular assist device implantation. Tex Heart Inst J 32:228–231PubMedGoogle Scholar
  25. 25.
    Cooper JR Jr, Abrams J, Frazier OH, Radovancevic R, Radovancevic B, Bracey AW, Kindo MJ, Gregoric ID (2006) Fatal pulmonary microthrombi during surgical therapy for end-stage heart failure: possible association with antifibrinolytic therapy. J Thorac Cardiovasc Surg 131:963–968PubMedCrossRefGoogle Scholar
  26. 26.
    Severinghaus JW, Stupfel M (1957) Alveolar dead space as an index of distribution of blood flow in pulmonary capillaries. J Appl Physiol 10:335–348PubMedGoogle Scholar
  27. 27.
    Cadroy Y, Gaspin D, Dupouy D, Lormeau JC, Boneu B, Sie P (1996) Heparin reverses the procoagulant properties of stimulated endothelial cells. Thromb Haemost 75:190–195PubMedCrossRefGoogle Scholar
  28. 28.
    Gori AM, Pepe G, Attanasio M, Falciani M, Abbate R, Prisco D, Fedi S, Giusti B, Brunelli T, Comeglio P, Gensini GF, Neri Serneri GG (1999) Tissue factor reduction and tissue factor pathway inhibitor release after heparin administration. Thromb Haemost 81:589–593PubMedGoogle Scholar
  29. 29.
    Pepe G, Giusti B, Attanasio M, Gori AM, Comeglio P, Martini F, Gensini G, Abbate R, Neri Serneri GG (1997) Tissue factor and plasminogen activator inhibitor type 2 expression in human stimulated monocytes is inhibited by heparin. Semin Thromb Hemost 23:135–141PubMedCrossRefGoogle Scholar
  30. 30.
    Marsh NA, Minter AJ, Chesterman CN (1990) The effect of heparin and other glycosaminoglycans on levels of tissue plasminogen activator and plasminogen activator inhibitor in cultured human umbilical vein endothelial cells. Blood Coagul Fibrinolysis 1:133–138PubMedGoogle Scholar
  31. 31.
    Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet JF, Eisner MD, Matthay MA (2002) Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 346:1281–1286PubMedCrossRefGoogle Scholar
  32. 32.
    Askrog V, Pender J, Eckenhoff J (1964) Changes in the physiological dead space during deliberate hypotension. Anesthesiology 25:744–751PubMedCrossRefGoogle Scholar
  33. 33.
    Nunn JF (1977) Respiratory dead space. In: Applied respiratory physiology, 2nd edn. Butterworths, LondonGoogle Scholar
  34. 34.
    Chandler WL, Velan T (2003) Estimating the rate of thrombin and fibrin generation in vivo during cardiopulmonary bypass. Blood 101:4355–4362PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Barry Dixon
    • 1
  • Duncan J. Campbell
    • 2
  • John D. Santamaria
    • 1
  1. 1.Intensive Care UnitSt. Vincent’s HospitalMelbourneAustralia
  2. 2.St. Vincent’s Institute of Medical ResearchMelbourneAustralia

Personalised recommendations