Advertisement

Intensive Care Medicine

, Volume 34, Issue 5, pp 923–931 | Cite as

Aging increases the susceptibility to injurious mechanical ventilation

  • Nicolás Nin
  • José A. Lorente
  • Marta De Paula
  • Pilar Fernández-Segoviano
  • Oscar Peñuelas
  • Alberto Sánchez-Ferrer
  • Leticia Martínez-Caro
  • Andrés Esteban
Experimental

Abstract

Objective

To test the hypothesis that aging increases the susceptibility to organ dysfunction and systemic inflammation induced by injurious mechanical ventilation.

Design and setting

Experimental study in an animal model of ventilator-induced lung injury in the animal research laboratory in a university hospital.

Methods

Young (3–4 months old) and old (22–24 months old) anesthetized Wistar rats were ventilated for 60 min with a protective lung strategy (VT = 9 ml/kg and PEEP = 5 cm H2O, control) or with an injurious strategy (VT = 35 ml/kg and PEEP = 0 cm H2O, overventilated; n = 6 for each group).

Measurements and results

Mean arterial pressure and airway pressures (PAW) were monitored. Arterial blood gases and serum AST, ALT, lactate, and IL-6 were measured. Vascular rings from the thoracic aorta were mounted in organ baths for isometric tension recording. We studied relaxations induced by acetylcholine (10 nM–10 μM) in norepinehrine-precontracted rings, and contractions induced by norepinephrine (1 nM–10 μM) in resting vessels. Lungs were examined by light microscopy. Injurious ventilation in young rats was associated with hypoxemia, lactic metabolic acidosis, increased serum AST, hypotension, impairment in norepinephrine and acetylcholine-induced vascular responses ex vivo and hyaline membrane formation. The high-VT induced hypotension, increase in mean PAW, AST, and IL-6, and the impairment in acetylcholine-induced responses were significantly more marked in aged than in young rats.

Conclusions

Elderly rats showed increased susceptibility to injurious mechanical ventilation-induced pulmonary injury, vascular dysfunction, and systemic inflammation.

Keywords

Mechanical ventilation Inflammation Organ dysfunction Acute lung injury Animal model Vascular dysfunction 

References

  1. 1.
    Milberg JA, Davis DR, Steinberg KP, Hudson LD (1995) Improved survival of patients with acute respiratory distress syndrome (ARDS): 1983–1993. JAMA 273:306–309PubMedCrossRefGoogle Scholar
  2. 2.
    Esteban A, Anzueto A, Frutos F, Alía I, Brochard L, Stewart T, Benito S, Epstein S, Apezteguía C, Nightingale P, Arroliga A, Tobin M (2002) Characteristics and outcomes in adult patients receiving mechanical ventilation. JAMA 287:345–355PubMedCrossRefGoogle Scholar
  3. 3.
    Chiumello D, Pristine G, Slutsky AS (1999) Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory syndrome. Am J Respir Crit Care Med 160:109–116PubMedGoogle Scholar
  4. 4.
    Dreyfuss D, Basset G, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132:880–884PubMedGoogle Scholar
  5. 5.
    Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323PubMedGoogle Scholar
  6. 6.
    Imai Y, Kajikawa I, Frevert C, de Perrot M, Fischer F, Parodo J, Edwards V, Cutz E, Zhang H, Ranieri M, Liu M, Keshavjee S, Marshall JC, Martin TR, Slutsky AS (2003) Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA 289:1204–2112CrossRefGoogle Scholar
  7. 7.
    Von Bethmann AN, Brasch F, Müller K Vogt K, Volk HD, Muller KM, Wendel A, Uhlig S (1996) Prolonged hyperventilation is required for release of tumor necrosis factor but not IL-6. Appl Cardiopulm Pathophysiol 16:171–177Google Scholar
  8. 8.
    Held HD, Boettcher S, Hamann L, Uhlig S (2001) Ventilation-induced chemokine and cytokine release is associated with activation of nuclear Factor-Κβ and is blocked by steroids. Am J Crit Care Med 163:771–716Google Scholar
  9. 9.
    Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99:944–952PubMedCrossRefGoogle Scholar
  10. 10.
    Choi WI, Quinn DA, Park KM, Moufarrej RK, Jafari B, Syrkina O, Bonventre JV, Hales CA (2003) Systemic Microvascular leak in an in vivo rat model of ventilator-induced lung injury. Am J Respir Crit Care Med 167:1627–1632PubMedCrossRefGoogle Scholar
  11. 11.
    Nin N, Valero JA, Lorente JA, de Paula M, Fernández-Segoviano P, Sánchez-Ferrer A, Esteban A (2005) Large tidal volume mechanical ventilation induces vascular dysfunction in rats. J Trauma 59:711–716PubMedGoogle Scholar
  12. 12.
    The acute respiratory distress syndrome network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308CrossRefGoogle Scholar
  13. 13.
    Chelluri L, Pinsky M, Greenvik A (1992) Outcome of intensive care of the “oldest-old” critically ill patients. Crit Care Med 20:757–761PubMedCrossRefGoogle Scholar
  14. 14.
    Behrendt CE (2000) Acute respiratory failure in United States: incidence and 31-day survival. Chest 118:1100–1105PubMedCrossRefGoogle Scholar
  15. 15.
    Esteban A, Anzueto A, Frutos-Vivar F, Alia I, Ely EW, Brochard L, Stewart TE, Apezteguia C, Tobin MJ, Nightingale P, Matamis D, Pimentel J, Abroug F (2004) Mechanical Ventilation International Study Group. Outcome of older patients receiving mechanical ventilation. Intensive Care Med 30:639–646PubMedCrossRefGoogle Scholar
  16. 16.
    Copland I, Martinez F, Kavanagh B, Engelberts D, McKerlie C, Belik J, Post M (2004) High tidal volume ventilation causes different inflammatory responses in newborn versus adult lung. Am J Respir Crit Care 169:739–748CrossRefGoogle Scholar
  17. 17.
    Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149:1327–1334PubMedGoogle Scholar
  18. 18.
    Matz RL, de Sotomayor MA, Schott C, Stoclet J, Andriantsitohaina R (2000) Vascular bed heterogenity in age-related endothelial dysfunction with respect to NO and eicosanoids. Br J Pharmacol 131:303–311PubMedCrossRefGoogle Scholar
  19. 19.
    Ricard JD, Dreyfuss D, Saumon G (2002) Production of inflammatory cytokines in ventilator-induced lung injury: a reappraisal. Am J Respir Crit Care Med 163:1176–1180Google Scholar
  20. 20.
    Guery BP, Welsh DA, Viget NB, Robriquet L, Fialdes P, Mason CM, Beaucaire G, Bagby GJ, Neviere R (2003) Ventilation-induced lung injury is associated with an increase in gut permeability. Shock 19:559–563PubMedCrossRefGoogle Scholar
  21. 21.
    Nin N, Peñuelas O, de Paula M, Lorente JA, Fernández-Segoviano P, Esteban A (2006) Ventilation-induced lung injury in rats is associated with organ injury and systemic inflammation that is attenuated by dexamethasone. Crit Care Med 34:1093–1098PubMedCrossRefGoogle Scholar
  22. 22.
    Borelli M, Kolobow T, Spatola R, Prato P, Tsuno K (1988) Severe acute respiratory failure managed with continuous positive airway pressure and partial extracorporeal carbon dioxide removal by an artificial membrane lung. Am Rev Respir Dis 138:1480–1487PubMedGoogle Scholar
  23. 23.
    Mandava S, Kolobow T, Vitale G, Feti G, Aprigliano M, Jones M, Muller E (2003) Lethal systemic capillary leak syndrome associated with severe ventilator-induced lung injury: an experimental study. Crit Care Med 31:885–892PubMedCrossRefGoogle Scholar
  24. 24.
    Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, Bruno F, Slutsky A (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome. JAMA 282:54–61PubMedCrossRefGoogle Scholar
  25. 25.
    Ranieri VM, Giunta F, Suter PM, Slutsky AS (2000) Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome JAMA 284:43–44Google Scholar
  26. 26.
    Ventrice EA, Marti-Sistac O, Gonzalvo R, Villagra A, Lopez-Aguilar J, Blanch L (2007) Molecular and biophysical mechanisms and modulation of ventilator-induced lung injury. Med Intensiva 31:73–82PubMedGoogle Scholar
  27. 27.
    Ince C (2005) The microcirculation is the motor of sepsis. Crit Care [Suppl] 9(4):S13–19CrossRefGoogle Scholar
  28. 28.
    Hammerman D (1999) Toward an understanding of frailty. Ann Intern Med 130:945–950Google Scholar
  29. 29.
    Cernadas M, Sánchez de Miguel L, García-Durán M, González-Fernández F, Millas I, Montón M, Rodrigo J, Rico L, Fernández P, de Frutos T, Rodríguez-Feo JA, Guerra J, Caramelo C, Casado S, López-Farré A (1998) Expression of constitutive and inducible nitric oxide synthases in the vascular wall of young and aging rats. Circ Res 83:279–286PubMedGoogle Scholar
  30. 30.
    Vanhoutte PM (2001) Endothelium-derived free radicals: for worse and for better. J Clin Invest 107:23–25PubMedCrossRefGoogle Scholar
  31. 31.
    McDonald A, McDonald E, Fulton JD, Wadsworth RM, Scott PJ, Howie KA (1995) No evidence for a general change in contractile responsiveness of the mesenteric artery with aging. J Gerontol 50:20–25Google Scholar
  32. 32.
    Copland IB, Kavanagh BP, Engelberts D, McKerlie C, Belik J, Post M (2003) Early changes in lung gene expression due to high tidal volume. Am J Respir Crit Care Med 168:1051–1058PubMedCrossRefGoogle Scholar
  33. 33.
    Rau GA, Vieten G, Haitsma JJ, Freihorst J, Poets C, Ure BM, Bernhard W (2004) Surfactant in newborn compared with adolescent pigs: adaptation to neonatal respiration. Am J Respir Cell Mol Biol 30:694–701PubMedCrossRefGoogle Scholar
  34. 34.
    Kornecki A, Tsuchida S, Ondiveeran HK, Engelberts D, Frndova H, Tanswell AK, Post M, McKerlie C, Belik J, Fox-Robichaud A, Kavanagh BP (2005) Lung development and susceptibility to ventilator-induced lung injury Am J Respir Crit Care Med 171:743–752Google Scholar
  35. 35.
    Adkins WK, Hernandez LA, Coker PJ, Buchanan B, Parker JC (1991) Age effects susceptibility to pulmonary barotrauma in rabbits. Crit Care Med 19:390–393PubMedCrossRefGoogle Scholar
  36. 36.
    Nardell EA, Brody JS (1982) Determinants of mechanical properties of rat lung during postnatal development. J Appl Physiol 53:140–148PubMedGoogle Scholar
  37. 37.
    Dreyfuss D, Ricard JD, Saumon G (2003) On the physiologic and clinical relevance of lung-borne cytokines during ventilator-induced lung injury. Am J Respir Crit Care Med 167:1467–1471PubMedCrossRefGoogle Scholar
  38. 38.
    Al-Jamal R, Ludwig MS (2001) Changes in proteoglycans and lung tissue mechanics during excessive mechanical ventilation in rats. Am J Physiol Lung Cell Mol Physiol 281:1078–1087Google Scholar
  39. 39.
    Aroeira LS, Williams O, Lozano EG, Martínez A (1994) Age-dependent changes in the response to staphylococcal enterotoxin. B Int Immunol 6:1555–1560CrossRefGoogle Scholar
  40. 40.
    Turnbull I, Wizorek JJ, Osborne D, Hotchkiss RS, Coopersmith CM, Buchman TG (2003) Effects of age on mortality and antibiotic efficacy in cecal ligation and puncture. Shock 19:310–313PubMedCrossRefGoogle Scholar
  41. 41.
    Hyde SR, McCallum RE (1992) Lipopolysaccharide-tumor necrosis factor-glucocorticoid interactions during cecal ligation and puncture-induced sepsis in mature versus senescent mice. Infect Immun 60:976–982PubMedGoogle Scholar
  42. 42.
    Chang HN, Wang SR, Chiang SC, Teng WJ, Chen ML, Tsai JJ, Huang DF, Lin HY, Tsai YY (1996) The relationship of aging to endotoxin shock and to production of TNF-α. J Gerontol A Biol Sci Med 51:M220–M222Google Scholar
  43. 43.
    Chorinchath BB, Kong LY, Mao L, McCallum RE (1996) Age-associated differences in TNF-α and nitric oxide production in endotoxic mice. J Immunol 156:1525–1530PubMedGoogle Scholar
  44. 44.
    Karanfilian RG, Spillert CR, Machiedo GW, Rush BF, Lazaro EJ (1983) Effect of age and splenectomy in murine endotoxemia. Adv Shock Res 9:125–132PubMedGoogle Scholar
  45. 45.
    Kuschnaroff ML, Goebels J, Valckx D, Heremans H, Matthys P, Waer M (1997) Increased mortality and impaired clonal deletion after staphylococcal enterotoxin B injection in old mice: relation to cytokines and nitric oxide production. Scand J Immunol 46:469–478PubMedCrossRefGoogle Scholar
  46. 46.
    Tateda K, Matsumoto M, Miyazaki S, Yamaguchi K (1996) Lipopolysaccharide-induced lethality and cytokine production in aged mice. Infect Immun 64:769–774PubMedGoogle Scholar
  47. 47.
    Marik P, Zaloga GP, and the Norasept II Study Investigators (2001) Circulating levels of proinflammatory cytokines during septic shock. J Am Geriatr Soc 49:5–9PubMedCrossRefGoogle Scholar
  48. 48.
    Bruunsgaard H, Skinhoj P, Qvist J, Pedersen BK (1999) Elderly humans show prolonged in vivo inflammatory activity during pneumococcal infection. J Infect Dis 180:551–554PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Nicolás Nin
    • 1
  • José A. Lorente
    • 1
  • Marta De Paula
    • 1
  • Pilar Fernández-Segoviano
    • 2
  • Oscar Peñuelas
    • 1
  • Alberto Sánchez-Ferrer
    • 1
  • Leticia Martínez-Caro
    • 1
  • Andrés Esteban
    • 1
  1. 1.Servicio de Cuidados Intensivos and CIBER de Enfermedades Respiratorias CB06/06/0044Instituto de Salud Carlos IIIMadridSpain
  2. 2.Servicio de Anatomía PatológicaHospital Universitario de GetafeMadridSpain

Personalised recommendations