Intensive Care Medicine

, 34:763

Terbutaline lessens protein fluxes across the alveolo-capillary barrier during high-volume ventilation

  • Nicolas de Prost
  • Didier Dreyfuss
  • Jean-Damien Ricard
  • Georges Saumon



To evaluate whether a β2-adrenergic agonist may reduce acute alveolo-capillary barrier alterations during high-volume ventilation.


Experimental study.


Animal research laboratory.


A total of 48 male Wistar rats.


A zone of alveolar flooding was produced by liquid instillation in a distal airway. Proteins in the instilled solution were traced with 99mTc-albumin. 111In, which binds to transferrin, was injected into the systemic circulation. Terbutaline was administered in the instilled solution or intra-peritoneally. Conventional ventilation was applied for 30 min followed by different ventilation strategies for 90 min: conventional ventilation, high-volume ventilation with or without 6 cmH2O PEEP.

Measurements and main results

Protein fluxes across the alveolar and microvascular barriers were evaluated by scintigraphy. High-volume ventilation resulted in immediate leakage of 99mTc-albumin from alveolar spaces and increased pulmonary uptake of systemic 111In-transferrin. Terbutaline in the instilled solution and PEEP lessened alveolar 99mTc-albumin leakage and pulmonary 111In-transferrin uptake due to high-volume ventilation, whereas terbutaline given intra-peritoneally only lessened 111In-transferrin uptake. Terbutaline in the instilled solution also lessened the increase in lung wet-to-dry weight ratio due to high-volume ventilation.


Terbutaline reduces protein fluxes across the alveolar epithelial and pulmonary microvascular barriers during high-volume ventilation in vivo. The route of administration may be important.


Pulmonary edema Intermittent positive pressure ventilation Beta-adrenergic agonists Radionuclide imaging 


  1. 1.
    Ware LB, Matthay MA (2005) Clinical practice. Acute pulmonary edema. N Engl J Med 353:2788–2796PubMedCrossRefGoogle Scholar
  2. 2.
    Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323PubMedGoogle Scholar
  3. 3.
    The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308CrossRefGoogle Scholar
  4. 4.
    Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, Hudson LD (2005) Incidence and outcomes of acute lung injury. N Engl J Med. 353:1685–1693PubMedCrossRefGoogle Scholar
  5. 5.
    Cepkova M, Matthay MA (2006) Pharmacotherapy of acute lung injury and the acute respiratory distress syndrome. J Intensive Care Med 21:119–143PubMedCrossRefGoogle Scholar
  6. 6.
    Sartori C, Allemann Y, Duplain H, Lepori M, Egli M, Lipp E, Hutter D, Turini P, Hugli O, Cook S, Nicod P, Scherrer U (2002) Salmeterol for the prevention of high-altitude pulmonary edema. N Engl J Med 346:1631–1636PubMedCrossRefGoogle Scholar
  7. 7.
    Perkins GD, McAuley DF, Thickett DR, Gao F (2006) The beta-agonist lung injury trial (BALTI): a randomized placebo-controlled clinical trial. Am J Respir Crit Care Med 173:281–287PubMedCrossRefGoogle Scholar
  8. 8.
    Ware LB, Matthay MA (2001) Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 163:1376–1383PubMedGoogle Scholar
  9. 9.
    Montaner JS, Tsang J, Evans KG, Mullen JB, Burns AR, Walker DC, Wiggs B, Hogg JC (1986) Alveolar epithelial damage. A critical difference between high pressure and oleic acid-induced low pressure pulmonary edema. J Clin Invest 77:1786–1796PubMedCrossRefGoogle Scholar
  10. 10.
    McAuley DF, Frank JA, Fang X, Matthay MA (2004) Clinically relevant concentrations of beta2-adrenergic agonists stimulate maximal cyclic adenosine monophosphate-dependent airspace fluid clearance and decrease pulmonary edema in experimental acid-induced lung injury. Crit Care Med 32:1470–1476PubMedCrossRefGoogle Scholar
  11. 11.
    Palmieri TL, Enkhbaatar P, Bayliss R, Traber LD, Cox RA, Hawkins HK, Herndon DN, Greenhalgh DG, Traber DL (2006) Continuous nebulized albuterol attenuates acute lung injury in an ovine model of combined burn and smoke inhalation. Crit Care Med 34:1719–1724PubMedCrossRefGoogle Scholar
  12. 12.
    Basran GS, Hardy JG, Woo SP, Ramasubramanian R, Byrne AJ (1986) Beta-2-adrenoceptor agonists as inhibitors of lung vascular permeability to radiolabelled transferrin in the adult respiratory distress syndrome in man. Eur J Nucl Med 12:381–384PubMedCrossRefGoogle Scholar
  13. 13.
    Parker JC, Ivey CL (1997) Isoproterenol attenuates high vascular pressure-induced permeability increases in isolated rat lungs. J Appl Physiol 83:1962–1967PubMedGoogle Scholar
  14. 14.
    Frank JA, McAuley DF, Gutierrez JA, Daniel BM, Dobbs L, Matthay MA (2005) Differential effects of sustained inflation recruitment maneuvers on alveolar epithelial and lung endothelial injury. Crit Care Med 33:181–188PubMedCrossRefGoogle Scholar
  15. 15.
    de Prost N, Dreyfuss D, Saumon G (2007) Evaluation of two-way protein fluxes across the alveolo-capillary membrane by scintigraphy in rats: effect of lung inflation. J Appl Physiol 102:794–802PubMedCrossRefGoogle Scholar
  16. 16.
    Martin-Lefevre L, Ricard JD, Roupie E, Dreyfuss D, Saumon G (2001) Significance of the changes in the respiratory system pressure–volume curve during acute lung injury in rats. Am J Respir Crit Care Med 164:627–632PubMedGoogle Scholar
  17. 17.
    Roselli RJ, Riddle WR (1989) Analysis of noninvasive macromolecular transport measurements in the lung. J Appl Physiol 67:2343–2350PubMedGoogle Scholar
  18. 18.
    Bouvet F, Dreyfuss D, Lebtahi R, Martet G, Le Guludec D, Saumon G (2005) Noninvasive evaluation of acute capillary permeability changes during high-volume ventilation in rats with and without hypercapnic acidosis. Crit Care Med 33:155–160PubMedCrossRefGoogle Scholar
  19. 19.
    de Prost N, Roux D, Dreyfuss D, Ricard JD, Le Guludec D, Saumon G (2007) Alveolar edema dispersion and alveolar protein permeability during high volume ventilation: effect of positive end-expiratory pressure. Intensive Care Med 33:711–717PubMedCrossRefGoogle Scholar
  20. 20.
    Dreyfuss D, Basset G, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132:880–884PubMedGoogle Scholar
  21. 21.
    Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110:556–565PubMedGoogle Scholar
  22. 22.
    Parker JC (2000) Inhibitors of myosin light chain kinase and phosphodiesterase reduce ventilator-induced lung injury. J Appl Physiol 89:2241–2248PubMedGoogle Scholar
  23. 23.
    Poo JL, Braillon A, Hadengue A, Gaudin C, Lebrec D (1992) Hemodynamic effects of terbutaline, a beta 2-adrenoceptor agonist, in conscious rats with secondary biliary cirrhosis. Hepatology 15:459–463PubMedCrossRefGoogle Scholar
  24. 24.
    Minnear FL, DeMichele MA, Leonhardt S, Andersen TT, Teitler M (1993) Isoproterenol antagonizes endothelial permeability induced by thrombin and thrombin receptor peptide. J Appl Physiol 75:1171–1179PubMedGoogle Scholar
  25. 25.
    Minnear FL, DeMichele MA, Moon DG, Rieder CL, Fenton JW 2nd (1989) Isoproterenol reduces thrombin-induced pulmonary endothelial permeability in vitro. Am J Physiol 257:H1613–1623PubMedGoogle Scholar
  26. 26.
    Kreienberg PB, Vincent PA, Bell DR, Saba TM, Minnear FL (1994) Isoproterenol decreases protein permeability in edematous isolated rabbit lungs: estimation of PS and sigma. J Appl Physiol 77:325–331PubMedGoogle Scholar
  27. 27.
    Berthiaume Y, Albertine KH, Grady M, Fick G, Matthay MA (1989) Protein clearance from the air spaces and lungs of unanesthetized sheep over 144 h. J Appl Physiol 67:1887–1897PubMedGoogle Scholar
  28. 28.
    Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149:1327–1334PubMedGoogle Scholar
  29. 29.
    Martynowicz MA, Walters BJ, Hubmayr RD (2001) Mechanisms of recruitment in oleic acid-injured lungs. J Appl Physiol 90:1744–1753PubMedGoogle Scholar
  30. 30.
    Bilek AM, Dee KC, Gaver DP 3rd (2003) Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. J Appl Physiol 94:770–783PubMedCrossRefGoogle Scholar
  31. 31.
    Dreyfuss D, Soler P, Saumon G (1992) Spontaneous resolution of pulmonary edema caused by short periods of cyclic overinflation. J Appl Physiol 72:2081–2089PubMedGoogle Scholar
  32. 32.
    Saldias FJ, Lecuona E, Comellas AP, Ridge KM, Rutschman DH, Sznajder JI (2000) beta-adrenergic stimulation restores rat lung ability to clear edema in ventilator-associated lung injury. Am J Respir Crit Care Med 162:282–287PubMedGoogle Scholar
  33. 33.
    Ottosson J, Svensjo E, Dawidson I, Persson T (1992) Septic shock in rats treated with terbutaline alone and in combination with chemotherapeutics, dexamethasone, and infusion of 3% albumin. Eur J Surg 158:89–93PubMedGoogle Scholar
  34. 34.
    Whitehurst VE, Joseph X, Alleva FR, Vick JA, Whittaker P, Zhang J, Fry BE Jr., Balazs T (1994) Enhancement of acute myocardial lesions by asthma drugs in rats. Toxicol Pathol 22:72–76PubMedCrossRefGoogle Scholar
  35. 35.
    Effros RM (2006) The beta-agonist lung injury trial (BALTI). Am J Respir Crit Care Med 173:1290; author reply 1291–1292PubMedCrossRefGoogle Scholar
  36. 36.
    Saumon G, Basset G, Bouchonnet F, Crone C (1987) cAMP and beta-adrenergic stimulation of rat alveolar epithelium. Effects on fluid absorption and paracellular permeability. Pflugers Arch 410:464–470PubMedCrossRefGoogle Scholar
  37. 37.
    Berthiaume Y, Folkesson HG, Matthay MA (2002) Lung edema clearance: 20 years of progress: invited review: alveolar edema fluid clearance in the injured lung. J Appl Physiol 93:2207–2213PubMedGoogle Scholar
  38. 38.
    Matthay MA, Abraham E (2006) Beta-adrenergic agonist therapy as a potential treatment for acute lung injury. Am J Respir Crit Care Med 173:254–255PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Nicolas de Prost
    • 1
    • 2
  • Didier Dreyfuss
    • 2
    • 3
  • Jean-Damien Ricard
    • 2
    • 3
    • 4
  • Georges Saumon
    • 1
    • 2
  1. 1.INSERM U773, Equipe 11Centre de Recherche Bichat Beaujon CRB3ParisFrance
  2. 2.Site Xavier BichatUniversité Paris 7 Denis DiderotParisFrance
  3. 3.Assistance Publique – Hôpitaux de Paris, Service de Réanimation MédicaleHôpital Louis MourierColombesFrance
  4. 4.INSERM U722ParisFrance

Personalised recommendations