Advertisement

Intensive Care Medicine

, Volume 33, Issue 12, pp 2158–2164 | Cite as

Bactericidal permeability increasing protein gene variants in children with sepsis

  • Jaroslav Michalek
  • Petra Svetlikova
  • Michal Fedora
  • Michal Klimovic
  • Lenka Klapacova
  • Drahomira Bartosova
  • Lubomir Elbl
  • Hana Hrstkova
  • Jaroslav A. Hubacek
Pediatric Original

Abstract

Objective

To evaluate the role of genetic polymorphisms of the bactericidal permeability increasing protein (BPI) in pediatric patients with sepsis.

Design

Prospective, single-center, case-control study at the pediatric intensive care unit (PICU) of a university hospital.

Patients

345 consecutive pediatric patients admitted to the PICU with fever, systemic inflammatory response syndrome (SIRS), sepsis, severe sepsis, septic shock, or multiple organ distress syndrome (MODS).

Interventions

DNA was isolated and two BPI gene polymorphisms BPI (G545 > C) Taq and BPI (A645 > G) 216 were studied in patients and compared with healthy controls.

Measurements and results

Genetic analysis of the BPI Taq gene revealed significant differences between healthy controls and the subgroup of febrile patients (p = 0.0243), the subgroup of SIRS and sepsis (p = 0.0101), and the subgroup of severe sepsis, septic shock, and MODS (p = 0.0027), respectively. No statistically significant differences for the BPI 216 gene polymorphism were found between patient and healthy control groups. A statistically significant predisposition to Gram-negative sepsis in patients carrying the BPI Taq GG variant together with the BPI 216 AG or GG variant was revealed (p = 0.0081), and these haplotypes were also associated with death due to sepsis-related complications.

Conclusion

BPI Taq gene polymorphism is the accurate predictor of the severity of sepsis in children admitted to the PICU.

Keywords

Sepsis Bactericidal permeability increasing protein Children Genetic polymorphism Immunity 

Notes

Acknowledgements

This work was supported by research project of the Grant Agency of the Czech Republic GACR No. 301/03/D196. We acknowledge J. Michalek Sr. for statistical analysis of data and N. Kugan who reviewed the medical English of this manuscript.

References

  1. 1.
    Parker MM, Fink MP (1992) Septic shock. J Intensive Care Med 7:90–1003Google Scholar
  2. 2.
    Andrews P, Azoulay E, Antonelli M, Brochard L, Brun-Buisson C, Dobb G, Fagon JY, Gerlach H, Groeneveld J, Mancebo J, Metnitz P, Nava S, Pugin J, Pinsky M, Radermacher P, Richard C, Tasker R, Vallet B (2005) Year in review in intensive care medicine, 2004. III. Outcome, ICU organisation, scoring, quality of life, ethics, psychological problems and communication in the ICU, immunity and hemodynamics during sepsis, pediatric and neonatal critical care, experimental studies. Intensive Care Med 31:356–372PubMedCrossRefGoogle Scholar
  3. 3.
    DuPont HL, Spink WW (1969) Infection due to Gram-negative organisms: an analysis of 860 patients with bacteremia at the University of Minnesota Medical Center 1958–1966. Medicine 48:307–332PubMedCrossRefGoogle Scholar
  4. 4.
    Watson RS, Carcillo JA, Linde-Zwirble WT, Clermont G, Lidicker J, Angus DC (2003) The epidemiology of severe sepsis in children in the United States. Am J Resp Crit Care Med 167:695–701PubMedCrossRefGoogle Scholar
  5. 5.
    Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent JL, Levy MM (2004) Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Intensive Care Med 30:536–555PubMedCrossRefGoogle Scholar
  6. 6.
    Bone RC (1993) Gram-negative sepsis: a dilemma of modern medicine. Clin Microbiol Rev 6:57–68PubMedGoogle Scholar
  7. 7.
    Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532PubMedCrossRefGoogle Scholar
  8. 8.
    Schumann RR, Rietschel ET, Loppnow H (1994) The role of CD14 and lipopolysaccharide-binding protein (LBP) in the activation of different cell types by endotoxin. Med Microbiol Immunol 183:279–297PubMedCrossRefGoogle Scholar
  9. 9.
    Ulevitch RJ (1993) Recognition of bacterial endotoxins by receptor-dependent mechanisms. Adv Immunol 53:267–289PubMedCrossRefGoogle Scholar
  10. 10.
    Froon AHM, Dentener MA, Greve JWM, Ramsay G, Buurman WA (1995) Lipopolysaccharide toxicity-regulating proteins in bacteremia. J Infect Dis 171:1250–1257PubMedGoogle Scholar
  11. 11.
    Hamann L, Alexander C, Stamme C, Zähringer U, Schumann RR (2005) Acute phase concentration of LPS inhibit innate cell activation by different LPS chemotypes via different mechanisms. Infect Immun 73:193–200PubMedCrossRefGoogle Scholar
  12. 12.
    Pavcnik-Arnol M, Hojker S, Derganc M (2004) Lipopolysaccharide-binding protein in critically ill neonates and children with suspected infection: comparison with procalcitonin, interleukin-6, and C-reactive protein. Intensive Care Med 30:1454–1460PubMedCrossRefGoogle Scholar
  13. 13.
    Irikura VM, Lagraoui M, Hirsh D (2002) The epistatic interrelationship of IL-1, IL-1 receptor antagonist, and the type I IL-1 receptor. J Immunol 169:393–398PubMedGoogle Scholar
  14. 14.
    Shu-Zun Q, Yan L, O'Connor CD (1994) The region around residue 115 of human bactericidal/permeability-increasing protein is not involved in lipopolysaccharide binding or bactericidal activity. Biochem J 298:711–718Google Scholar
  15. 15.
    Hubacek JA, Buchler C, Aslanidis C, Schmitz G (1997) The genomic organization of the genes for human lipopolysaccharide binding protein (LBP) and bactericidal permeability increasing protein (BPI) is highly conserved. Biochem Biophys Res Commun 236:427–430PubMedCrossRefGoogle Scholar
  16. 16.
    Nupponen I, Turunen R, Nevailainen T, Peuravuori H, Pohjavuori M, Repo H, Andersson S (2002) Extracellular release of bactericidal/permeability-increasing protein in newborn infants. Pediatr Res 51:670–674PubMedGoogle Scholar
  17. 17.
    Weiss J (2003) Bactericidal/permeability increasing protein (BPI) and lipopolysaccharide-binding protein (LBP): structure, function and regulation in host defence against gram-negative bacteria. Biochem Soc Trans 31:785–790PubMedCrossRefGoogle Scholar
  18. 18.
    Rintala E, Peuravuori H, Pulkki K, Voipio-Pulkki LM, Nevalainen T (2000) Bactericidal/permeability-increasing protein (BPI) in sepsis correlates with the severity of sepsis and the outcome. Intensive Care Med 26:1248–1251PubMedCrossRefGoogle Scholar
  19. 19.
    Alexander S, Bramson J, Foley R, Xing Z (2004) Protection from endotoxemia by adenoviral-mediated gene transfer of human bactericidal/permeability-increasing protein. Blood 103:93–99PubMedCrossRefGoogle Scholar
  20. 20.
    Hubacek JA, Stüber F, Fröhlich D, Book M, Wetegrove S, Ritter M, Rothe G, Schmitz G (2001) Gene variants of the bactericidal/permeability increasing protein and lipopolysaccharide binding protein in sepsis patients: gender-specific genetic predisposition to sepsis. Crit Care Med 29:557–561PubMedCrossRefGoogle Scholar
  21. 21.
    Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G (2003) SCCM/ESICM/ACCP/ATS/SIS 2001 International Sepsis Definitions Conference. Crit Care Med 31:1250–1256PubMedCrossRefGoogle Scholar
  22. 22.
    Goldstein B, Giroir B, Randolph A, and the Members of the International Consensus Conference on Pediatric Sepsis (2005) International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 6:2–8PubMedCrossRefGoogle Scholar
  23. 23.
    Pollack MM, Ruttimann UE, Getson PR (1988) Pediatric risk of mortality (PRISM) score. Crit Care Med 16:1110–1116PubMedGoogle Scholar
  24. 24.
    Multinational monitoring of trends and determinants in cardiovascular diseases: “MONICA Project”. Manual of operations WHO/MNC 82.2, November 1983Google Scholar
  25. 25.
    Hubacek JA, Pitha J, Skodova Z, Adamkova V, Podrapska I, Schmitz G, Poledne R (2002) Polymorphisms in the lipopolysaccharide-binding protein and bactericidal/permeability-increasing protein in patients with myocardial infarction. Clin Chem Lab Med 40:1097–1100PubMedCrossRefGoogle Scholar
  26. 26.
    Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extraction DNA from human nucleated cells. Nucleic Acid Res 16:1215–1218PubMedCrossRefGoogle Scholar
  27. 27.
    Agresti A (1990) Categorical data analysis. Wiley, New York, pp 42–78Google Scholar
  28. 28.
    Wong HR, Doughty LA, Wedel N, White M, Nelson BJ, Havrilla N, Carcillo JA (1995) Plasma bactericidal/permeability-increasing protein concentrations in critically ill children with sepsis syndrome. Pediatr Infect Dis J 14:1087–1091PubMedCrossRefGoogle Scholar
  29. 29.
    Leteurtre S, Martinot A, Duhamel A, Proulx F, Grandbastien B, Cotting J, Gottesman R, Joffe A, Pfenninger J, Hubert P, Lacroix J, Leclerc F (2003) Validation of the paediatric logistic organ dysfunction (PELOD) score: prospective, observational, multicentre study. Lancet 362:192–197PubMedCrossRefGoogle Scholar
  30. 30.
    Klein W, Tromm A, Folwaczny C, Hagedorn M, Duerig N, Epplen J, Schmiegel W, Griga T (2005) A polymorphism of the bactericidal/permeability increasing protein (BPI) gene is associated with Crohn's disease. J Clin Gastroenterol 39:282–283PubMedCrossRefGoogle Scholar
  31. 31.
    Bindl L, Buderus S, Dahlem P, Demirakca S, Goldner M, Huth R, Kohl M, Krause M, Kuhl P, Lasch P, Lewandowski K, Merz U, Moeller J, Mohamed Y, Peters M, Porz W, Vierzig A, Richard J, Scharf J, Varnholt V, ESPNIC ARDS Database Group (2003) Gender-based differences in children with sepsis and ARDS: the ESPNIC ARDS Database Group. Intensive Care Med 29:1770–1773PubMedCrossRefGoogle Scholar
  32. 32.
    Ahrens P, Kattner E, Kohler B, Hartel C, Seidenberg J, Segerer H, Moller J, Gopel W (2004) Mutations of genes involved in the innate immune system as predictors of sepsis in very low birth weight infants. Pediatr Res 55:652–656PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jaroslav Michalek
    • 1
  • Petra Svetlikova
    • 2
  • Michal Fedora
    • 3
  • Michal Klimovic
    • 3
  • Lenka Klapacova
    • 2
  • Drahomira Bartosova
    • 2
  • Lubomir Elbl
    • 4
  • Hana Hrstkova
    • 1
  • Jaroslav A. Hubacek
    • 5
  1. 1.First Department of PediatricsUniversity Hospital BrnoBrnoCzech Republic
  2. 2.Department of Pediatric Infectious DiseasesUniversity Hospital BrnoBrnoCzech Republic
  3. 3.Department of Anesthesia and Intensive CareUniversity Hospital BrnoBrnoCzech Republic
  4. 4.Department of Cardiopulmonary TestingUniversity Hospital BrnoBrnoCzech Republic
  5. 5.Department of Experimental MedicineInstitute for Clinical and Experimental MedicinePragueCzech Republic

Personalised recommendations