Advertisement

Intensive Care Medicine

, Volume 34, Issue 2, pp 355–360 | Cite as

Smart Bag vs. Standard bag in the temporary substitution of the mechanical ventilation

  • Robin LovatEmail author
  • Christine Watremez
  • Michel Van Dyck
  • Olivier Van Caenegem
  • Franck Verschuren
  • Philippe Hantson
  • Luc-Marie Jacquet
Brief Report

Abstract

Objective

To compare in intubated patients manually ventilated in order to mirror the ventilator, the respiratory and hemodynamic effects induced by a bag device equipped with an inspiratory gas flow-limiting valve (Smart Bag, 0-Two Medical Technologies Inc., Mississauga, ON, Canada) and a Standard bag.

Design

Non-randomized crossover study comparing 13 respiratory and eight hemodynamically paired parameters. Eight intubated patients were manually ventilated, each by three different intensive care workers yielding 24 sets of data for comparison. Data were collected during two sessions of manual ventilation, first with the Standard bag and then with the Smart Bag. Between each session, the patient was reconnected to the ventilator until return to the baseline. Patients, included after coronary surgery, were sedated and paralyzed.

Setting

Intensive Care Unit, university hospital.

Results

Compared with Standard bag, the Smart Bag® provided a decrease of inspiratory flow (23 ± 4.7 vs. 47.3 ± 16.5 l/min) with a decrease of peak pressure (13.3 ± 2.9 vs. 21.9 ± 7.3 cmH2O) and tidal volume (9.4 ± 2.8 vs. 12.4 ± 2.7 ml/kg). While the expiratory time was similar, the inspiratory time increased (1.83 ± 0.58 vs. 1.28 ± 0.46 s) with the Smart Bag, limiting the respiratory rate (14 ± 5 vs. 17 ± 6 cycles/min) and the minute volume (8.8 ± 2.9 vs. 14.4 ± 4.9 l/min). Finally, it limited the fall of the ETCO2 (27.9 ± 5.1 vs. 24.3 ± 5.7 mmHg) and probably the risks of severe respiratory alkalosis. The bags similarly affected hemodynamic states.

Conclusion

In intubated patients manually ventilated, the Smart Bag limits the risks of excessive airway pressure and the fall of the ETCO2, with hemodynamic effects similar to those of the Standard bag.

Keywords

Intubated patient Manual ventilation Bag-valve device Limitation of inspiratory gas flow 

References

  1. 1.
    Ricard JD (2005) Manual ventilation and risk of barotrauma: Primum Non Nocere. Respir Care 50:338–339PubMedGoogle Scholar
  2. 2.
    Turki M, Young MP, Wagers SS, Bates JHT (2005) Peak pressures during manual ventilation. Respir Care 50:340–344PubMedGoogle Scholar
  3. 3.
    Silbergleit R, Lee DC, Blank-Reid C, McNamara RM (1996) Sudden severe barotrauma from self-inflating bag-valve devices. J Trauma 40:320–322PubMedCrossRefGoogle Scholar
  4. 4.
    Clarke RC, Kelly BE, Convery PN, Fee JPH (1999) Ventilatory characteristics in mechanically ventilated patients during manual hyperventilation for chest physiotherapy. Anaesthesia 54:936–940PubMedCrossRefGoogle Scholar
  5. 5.
    Jellinek H, Krafft P, Fitzgerald RD, Schwarz S, Pinsky MR (2000) Right atrial pressure predicts hemodynamic response to apneic positive airway pressure. Crit Care Med 28:672–678PubMedCrossRefGoogle Scholar
  6. 6.
    Komdeur R, van der Werf TS, Ligtenberg JJ, Tulleken JE, Zijlstra JG (2000) Hemodynamic and ventilatory complications of mechanical ventilation with high intrinsic positive end-expiratory pressure. Ned Tijdschr Geneeskd 144:1445–1450PubMedGoogle Scholar
  7. 7.
    Murphy BA, Durbin CG Jr (2005) Using ventilator and cardiovascular graphics in the patient who is hemodynamically unstable. Respir Care 50:262–274PubMedGoogle Scholar
  8. 8.
    Pinsky MR (1990) The effects of mechanical ventilation on the cardiovascular system. Crit Care Clin 6:663–678PubMedGoogle Scholar
  9. 9.
    Hurst JM, Davis K Jr, Branson RD, Johannigman JA (1989) Comparison of blood gases during transport using two methods of ventilatory support. J Trauma 29:1637–1640PubMedGoogle Scholar
  10. 10.
    Wagner-Berger HG, Wenzel V, Stallinger A, Voelckel WG, Rheinberger K, Stadlbauer KH, Augenstein S, Dorges V, Lindner KH, Hormann C (2003) Decreasing peak flow rate with a new bag-valve-mask device: effects on respiratory mechanics, and gas distribution in a bench model of an unprotected airway. Resuscitation 57:193–199PubMedCrossRefGoogle Scholar
  11. 11.
    Wagner-Berger HG, Wenzel V, Voelckel WG, Rheinberger K, Stadlbauer KH, Muller T, Augenstein S, von Goedecke A, Lindner KH, Keller C (2003) A pilot study to evaluate the SMART BAG: a new pressure-responsive, gas-flow limiting bag-valve-mask device. Anesth Analg 97:1686–1689PubMedCrossRefGoogle Scholar
  12. 12.
    von Goedecke A, Wagner-Berger HG, Stadlbauer KH, Krismer AC, Jakubaszko J, Bratschke C, Wenzel V, Keller C (2004) Effects of decreasing peak flow rate on stomach inflation during bag-valve-mask ventilation. Resuscitation 63:131–136PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Robin Lovat
    • 1
    Email author
  • Christine Watremez
    • 2
  • Michel Van Dyck
    • 2
  • Olivier Van Caenegem
    • 1
  • Franck Verschuren
    • 3
  • Philippe Hantson
    • 4
  • Luc-Marie Jacquet
    • 1
  1. 1.Cardiovascular Department, Intensive Care UnitCliniques Universitaires Saint LucBrusselsBelgium
  2. 2.Department of AnesthesiologyCliniques Universitaires Saint LucBrusselsBelgium
  3. 3.Department of Acute Medicine, EmergencyCliniques Universitaires Saint LucBrusselsBelgium
  4. 4.Department of Acute Medicine, Intensive Care UnitCliniques Universitaires Saint LucBrusselsBelgium

Personalised recommendations