Intensive Care Medicine

, Volume 34, Issue 1, pp 75–81 | Cite as

Automatic selection of breathing pattern using adaptive support ventilation

  • Jean-Michel ArnalEmail author
  • Marc Wysocki
  • Cyril Nafati
  • Stéphane Donati
  • Isabelle Granier
  • Gaëlle Corno
  • Jacques Durand-Gasselin



In a cohort of mechanically ventilated patients to compare the automatic tidal volume (V T)–respiratory rate (RR) combination generated by adaptive support ventilation (ASV) for various lung conditions.

Design and setting

Prospective observational cohort study in the 11-bed medicosurgical ICU of a general hospital.


243 patients receiving 1327 days of invasive ventilation on ASV.


Daily collection of ventilator settings, breathing pattern, arterial blood gases, and underlying clinical respiratory conditions categorized as: normal lungs, ALI/ARDS, COPD, chest wall stiffness, or acute respiratory failure.


Overall the respiratory mechanics differed significantly with the underlying conditions. In passive patients ASV delivered different V T–RR combinations based on the underlying condition, providing higher V T and lower RR in COPD than in ALI/ARDS: 9.3 ml/kg (8.2–10.8) predicted body weight (PBW) and 13 breaths/min (11–16) vs. 7.6 ml/kg (6.7–8.8) PBW and 18 breaths/min (16–22). In patients actively triggering the ventilator the V T–RR combinations did not differ between COPD, ALI/ARDS, and normal lungs.


ASV selects different V T–RR combinations based on respiratory mechanics in passive, mechanically ventilated patients.


Adaptive support ventilation Closed-loop ventilation Acute respiratory distress syndrome Chronic obstructive pulmonary disease Mechanical ventilation 



We are indebted to Mrs. Sandy Miller for her technical assistance in preparation of the manuscript.

Supplementary material

134_2007_847_MOESM1_ESM.doc (71 kb)
Electronic Supplementary Material (DOC 71K)


  1. 1.
    Brunner JX, Iotti GA (2002) Adaptive support ventilation (ASV). Minerva Anesthesiol 68:365–368Google Scholar
  2. 2.
    Campbell RS, Branson RD, Johannigman JA (2001) Adaptive support ventilation. Respir Care Clin N Am 7:425–440PubMedCrossRefGoogle Scholar
  3. 3.
    Otis AB, Fenn WO, Rahn H (1950) Mechanics of breathing in man. J Appl Physiol 2:592–607PubMedGoogle Scholar
  4. 4.
    Brunner JX, Laubsher TP, Banner MJ, Iotti G, Brashi A (1995) Simple method to measure total expiratory time constant based on passive expiratory flow-volume curve. Crit Care Med 23:1117–1122PubMedCrossRefGoogle Scholar
  5. 5.
    Lourens MS, Van Den Berg B, Aerts JG, Verbraak AFM, Hoogsteden HC, Bogaard JM (2000) Expiratory time constants in mechanically ventilated patients with and without COPD. Intensive Care Med 26:1612–1618PubMedCrossRefGoogle Scholar
  6. 6.
    Belliato M, Palo A, Pasero D, Iotti GA, Mojoli F, Brashi A (2004) Evaluation of adaptive support ventilation in paralysed patients and in a physical lung model. Int J Artif Organs 27:709–716PubMedGoogle Scholar
  7. 7.
    Arnal JM, Nafati C, Wysocki M, Donati SY, Granier I, Durand-Gasselin J (2004) Utilization of an automatic mode of ventilation (ASV) in a mixed ICU population: prospective observational study. Intensive Care Med 30:S84CrossRefGoogle Scholar
  8. 8.
    Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Le Gall JR, Morris A, Spragg R (1994) Report of the American–European Consensus Conference on acute respiratory distress syndrome: definitions, mechanism, relevant outcomes, and clinical trial coordination. Consensus Committee. Am J Respir Crit Care Med 149:818–824PubMedGoogle Scholar
  9. 9.
    Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, Van Weel C, Zielinski J (2007) Global strategy for the diagnosis, management, and prevention of COPD—2006 update. Am J Respir Crit Care Med (epub ahead of print: 16 May)Google Scholar
  10. 10.
    MacDuff A, Grant IS (2003) Critical care management of neuromuscular disease, including long term ventilation. Curr Opin Crit Care 9:106–112PubMedCrossRefGoogle Scholar
  11. 11.
    Tassaux D, Dalmas E, Gratadour P, Jolliet P (2002) Patient-ventilator interactions during partial ventilatory support: a preliminary study comparing the effects of adaptive support ventilation with synchronized intermittent mandatory ventilation plus inspiratory pressure support. Crit Care Med 30:801–807PubMedCrossRefGoogle Scholar
  12. 12.
    Devine BJ (1974) Gentamicin therapy. Drug Intell Clin Pharm 8:650–655Google Scholar
  13. 13.
    Geogopoulos D, Prinianakis D, Kondili E (2006) Bedside waveforms interpretation as a tool to identify patient-ventilator asynchronies. Intensive Care Med 32:34–47CrossRefGoogle Scholar
  14. 14.
    Iotti GA, Braschi A, Brunner JX, Smits T, Olivei M, Palo A, Veronesi R (1995) Respiratory mechanics by least squares fitting in mechanically ventilated patients: applications during paralysis and during pressure support ventilation. Intensive Care Med 21:406–413PubMedCrossRefGoogle Scholar
  15. 15.
    Marantz S, Patrick W, Webster K, Roberts D, Oppenheimer L, Younes M (1996) Response of ventilator dependant patient s to different levels of proportional assist. J Appl Physiol 80:397–403PubMedGoogle Scholar
  16. 16.
    Jaber S, Delay JM, Matecki S, Sebbane M, Eledjam JJ, Brochard L (2005) Volume-guaranteed pressure support facing acute change in ventilatory demand. Intensive Care Med 31:1181–1188PubMedCrossRefGoogle Scholar
  17. 17.
    Kondili E, Prinianakis G, Georgopoulos D (2003) Patient-ventilator interaction. Br J Anaesth 91:106–119PubMedCrossRefGoogle Scholar
  18. 18.
    Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 18:1301–1308CrossRefGoogle Scholar
  19. 19.
    National Heart, Lung and Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network, Wheeler AP, Bernard GR, Thompson BT, Schoenfeld D, Wiedemann HP, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL (2006) Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med 354:2213–2224PubMedCrossRefGoogle Scholar
  20. 20.
    National Heart, Lung and Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network, Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–2575PubMedCrossRefGoogle Scholar
  21. 21.
    Deans K, Minneci P, Cui X, Banks S, Natanson C, Eichacker P (2005) Mechanical ventilation in ARDS: one size does not fit all. Crit Care Med 33:1141–1143PubMedCrossRefGoogle Scholar
  22. 22.
    Weinert CR, Gross C, Marinelli WA (2003) Impact of randomized trial results on acute lung injury ventilator therapy in teaching hospitals. Am J Respir Crit Care Med 167:1304–1309PubMedCrossRefGoogle Scholar
  23. 23.
    Young MP, Manning HL, Wilson DL, Mette SA, Riker RR, Leiter JC, Liu SK, Bates JT, Parsons PE (2004) Ventilation of patients with acute lung injury and acute respiratory distress syndrome: has new evidence changed clinical practice? Crit Care Med 32:1260–1265PubMedCrossRefGoogle Scholar
  24. 24.
    Gajic O, Frutos-Vivar F, Esteban A, Hubmayr RD, Anzueto A (2005) Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients. Intensive Care Med 31:922–926PubMedCrossRefGoogle Scholar
  25. 25.
    Bonetto C, Terragni P, Ranieri M (2005) Does high tidal volume generate ALI/ARDS in healthy lungs? Intensive Care Med 31:893–895PubMedCrossRefGoogle Scholar
  26. 26.
    Gajic O, Dara SI, Mendez JL, Adesanya AO, Festic E, Caples SM, Rana R, St Sauver JL, Lymp JF, Afessa B, Hubmayr RD (2004) Ventilator-induced lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med 32:1817–1824PubMedCrossRefGoogle Scholar
  27. 27.
    Iotti GA, Belliato M, Polito A, Pasero D, Beduneau G, Brochard L, Mancebo J, Ranieri MV (2005) Safety and effectiveness of adaptive support ventilation (ASV) in acute respiratory failure. Intensive Care Med 31:S168CrossRefGoogle Scholar
  28. 28.
    Sultzer CF, Chioléro R, Chassot PG, Mueller XM, Revelly JP (2001) Adaptive support ventilation for tracheal extubation after cardiac surgery. Anesthesiology 95:1339–1345CrossRefGoogle Scholar
  29. 29.
    Petter AH, Chiolero RL, Cassina T, Chassot PG, Muller XM, Revelly JP (2003) Automatic “respirator/weaning” with adaptive support ventilation: the effect on duration of endotracheal intubation and patient management. Anesth Analg 97:1743–1750PubMedCrossRefGoogle Scholar
  30. 30.
    Lellouche F, Mancebo J, Jolliet P, Roeseler J, Schortgen F, Dojat M, Cabello B, Bouadma L, Rodriguez P, Maggiore S, Reynaert M, Mersmann S, Brochard L (2006) A multicenter randomized trial of computer-driven protocolized weaning from mechanical ventilation. Am J Respir Crit Care Med 174:894–900PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jean-Michel Arnal
    • 1
    Email author
  • Marc Wysocki
    • 2
  • Cyril Nafati
    • 1
  • Stéphane Donati
    • 1
  • Isabelle Granier
    • 1
  • Gaëlle Corno
    • 1
  • Jacques Durand-Gasselin
    • 1
  1. 1.Service de réanimation polyvalenteHôpital Font PréToulonFrance
  2. 2.Department of Medical ResearchHamilton MedicalBonaduzSwitzerland

Personalised recommendations