Intensive Care Medicine

, Volume 34, Issue 3, pp 543–550 | Cite as

Assessment of regional lung recruitment and derecruitment during a PEEP trial based on electrical impedance tomography

  • Torsten Meier
  • Henning Luepschen
  • Jan Karsten
  • Thorsten Leibecke
  • Martin Großherr
  • Hartmut Gehring
  • Steffen Leonhardt



To investigate whether electrical impedance tomography (EIT) is capable of monitoring regional lung recruitment and lung collapse during a positive end-expiratory pressure (PEEP) trial.


Experimental animal study of acute lung injury.


Six pigs with saline-lavage-induced acute lung injury.


An incremental and decremental PEEP trial at ten pressure levels was performed. Ventilatory, gas exchange, and hemodynamic parameters were automatically recorded. EIT and computed tomography (CT) scans of the same slice were simultaneously taken at each PEEP level.

Measurements and results

A significant correlation between EIT and CT analyses of end-expiratory gas volumes (r = 0.98 up to 0.99) and tidal volumes (r = 0.55 up to r = 0.88) could be demonstrated. Changes in global and regional tidal volumes and arterial oxygenation (PaO2/FiO2) demonstrated recruitment/derecruitment during the trial, but at different onsets. During the decremental trial, derecruitment first occurred in dependent lung areas. This was indicated by lowered regional tidal volumes measured in this area and by a decrease of PaO2/FiO2. At the same time, the global tidal volume still continued to increase, because the increase of ventilation of the non-dependent areas was higher than the loss in the dependent areas. This indicates that opposing regional changes might cancel each other out when combined in a global parameter.


EIT is suitable for monitoring the dynamic effects of PEEP variations on the regional change of tidal volume. It is superior to global ventilation parameters in assessing the beginning of alveolar recruitment and lung collapse.


Electrical impedance tomography Computed tomography Acute lung injury Lung recruitment Positive end-expiratory pressure 



The support of Eckhard Teschner, Dräger Medical AG, is gratefully acknowledged.


  1. 1.
    Gattinoni L, Pesenti A, Bombino M, Baglioni S, Rivolta M, Rossi F, Rossi G, Fumagalli R, Marcolin R, Mascheroni D, Torressin A (1988) Relationships between lung computed tomographic density, gas exchange, and PEEP in acute respiratory failure. Anesthesiology 69:824–832PubMedCrossRefGoogle Scholar
  2. 2.
    Sinclair SE, Albert RK (1997) Altering ventilation–perfusion relationships in ventilated patients with acute lung injury. Intensive Care Med 23:942–950PubMedCrossRefGoogle Scholar
  3. 3.
    Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet JF, Eisner MD, Matthay MA (2002) Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 346:1281–1286PubMedCrossRefGoogle Scholar
  4. 4.
    Tremblay LN, Slutsky AS (2006) Ventilator-induced lung injury: from the bench to the bedside. Intensive Care Med 32:24–33PubMedCrossRefGoogle Scholar
  5. 5.
    Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323PubMedGoogle Scholar
  6. 6.
    Hickling KG (1998) The pressure-volume curve is greatly modified by recruitment. A mathematical model of ARDS lungs. Am J Respir Crit Care Med 158:194–202PubMedGoogle Scholar
  7. 7.
    Stenqvist O (2003) Practical assessment of respiratory mechanics. Br J Anaesth 91:92–105PubMedCrossRefGoogle Scholar
  8. 8.
    Gattinoni L, Caironi P, Pelosi P, Goodman LR (2001) What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 164:1701–1711PubMedGoogle Scholar
  9. 9.
    Puybasset L, Cluzel P, Gusman P, Grenier P, Preteux F, Rouby JJ (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. CT Scan ARDS Study Group. Intensive Care Med 26:857–869PubMedCrossRefGoogle Scholar
  10. 10.
    Malbouisson LM, Muller JC, Constantin JM, Lu Q, Puybasset L, Rouby JJ (2001) Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 163:1444–1450PubMedGoogle Scholar
  11. 11.
    Frerichs I, Hinz J, Herrmann P, Weisser G, Hahn G, Dudykevych T, Quintel M, Hellige G (2002) Detection of local lung air content by electrical impedance tomography compared with electron beam CT. J Appl Physiol 93:660–666PubMedGoogle Scholar
  12. 12.
    Frerichs I, Dargaville PA, Dudykevych T, Rimensberger PC (2003) Electrical impedance tomography: a method for monitoring regional lung aeration and tidal volume distribution? Intensive Care Med 29:2312–2316PubMedCrossRefGoogle Scholar
  13. 13.
    Frerichs I, Schiffmann H, Hahn G, Hellige G (2001) Non-invasive radiation-free monitoring of regional lung ventilation in critically ill infants. Intensive Care Med 27:1385–1394PubMedCrossRefGoogle Scholar
  14. 14.
    Victorino JA, Borges JB, Okamoto VN, Matos GF, Tucci MR, Caramez MP, Tanaka H, Sipmann FS, Santos DC, Barbas CS, Carvalho CR, Amato MB (2004) Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med 169:791–800PubMedCrossRefGoogle Scholar
  15. 15.
    Frerichs I, Braun P, Dudykevych T, Hahn G, Genee D, Hellige G (2004) Distribution of ventilation in young and elderly adults determined by electrical impedance tomography. Respir Physiol Neurobiol 143:63–75PubMedCrossRefGoogle Scholar
  16. 16.
    Kunst PW, Vazquez de Anda G, Bohm SH, Faes TJ, Lachmann B, Postmus PE, de Vries PM (2000) Monitoring of recruitment and derecruitment by electrical impedance tomography in a model of acute lung injury. Crit Care Med 28:3891–3895PubMedCrossRefGoogle Scholar
  17. 17.
    Odenstedt H, Lindgren S, Olegard C, Erlandsson K, Lethvall S, Aneman A, Stenqvist O, Lundin S (2005) Slow moderate pressure recruitment maneuver minimizes negative circulatory and lung mechanic side effects: evaluation of recruitment maneuvers using electric impedance tomography. Intensive Care Med 31:1706–1714PubMedCrossRefGoogle Scholar
  18. 18.
    Frerichs I, Dargaville PA, van Genderingen HR, Morel DR, Rimensberger PC (2006) Lung volume recruitment after surfactant administration modifies spatial distribution of ventilation. Am J Respir Crit Care Med 174:772–779PubMedCrossRefGoogle Scholar
  19. 19.
    Meier T, Luepschen H, Karsten J, Leibecke T, Großherr M, Leonhardt S (2006) Comparison of regional lung recruitment in electrical impedance tomograms and CT scans in experimental acute lung injury. Critical Care [Suppl] 10(1):P7CrossRefGoogle Scholar
  20. 20.
    Meier T, Luepschen H, Karsten J, Großherr M, Leibecke T, Gehring H, Leonhardt S (2006) Impact of different PEEP levels on regional compliance measured by electrical impedance tomography. Intensive Care Med [Suppl] 32(13):S221Google Scholar
  21. 21.
    Brown BH (2003) Electrical impedance tomography (EIT) a review. J Med Eng Technol 27:97–108PubMedCrossRefGoogle Scholar
  22. 22.
    Brown BH, Barber DC (1987) Electrical impedance tomography; the construction and application to physiological measurement of electrical impedance images. Med Prog Technol 13:69–75PubMedGoogle Scholar
  23. 23.
    Barber DC (1989) A review of image reconstruction techniques for electrical impedance tomography. Med Phys 16:162–169PubMedCrossRefGoogle Scholar
  24. 24.
    Lachmann B, Robertson B, Vogel J (1980) In vivo lung lavage as an experimental model of the respiratory distress syndrome. Acta Anaesthesiol Scand 24:231–236PubMedCrossRefGoogle Scholar
  25. 25.
    Hahn G, Sipinkova I, Baisch F, Hellige G (1995) Changes in the thoracic impedance distribution under different ventilatory conditions. Physiol Meas [Suppl] 16:A161–A173CrossRefGoogle Scholar
  26. 26.
    Gattinoni L, Pelosi P, Crotti S, Valenza F (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151:1807–1814PubMedGoogle Scholar
  27. 27.
    Wolf GK, Arnold JH (2005) Noninvasive assessment of lung volume: respiratory inductance plethysmography and electrical impedance tomography. Crit Care Med [Suppl] 33:S163–S169CrossRefGoogle Scholar
  28. 28.
    Adler A, Amyot R, Guardo R, Bates JH, Berthiaume Y (1997) Monitoring changes in lung air and liquid volumes with electrical impedance tomography. J Appl Physiol 83:1762–1767PubMedGoogle Scholar
  29. 29.
    Luecke T, Meinhardt JP, Herrmann P, Weiss A, Quintel M, Pelosi P (2006) Oleic acid vs saline solution lung lavage-induced acute lung injury: effects on lung morphology, pressure–volume relationships, and response to positive end-expiratory pressure. Chest 130:392–401PubMedCrossRefGoogle Scholar
  30. 30.
    Kunst PW, Bohm SH, Vazquez de Anda G, Amato MB, Lachmann B, Postmus PE, de Vries PM (2000) Regional pressure volume curves by electrical impedance tomography in a model of acute lung injury. Crit Care Med 28:178–183PubMedCrossRefGoogle Scholar
  31. 31.
    Hinz J, Moerer O, Neumann P, Dudykevych T, Frerichs I, Hellige G, Quintel M (2006) Regional pulmonary pressure volume curves in mechanically ventilated patients with acute respiratory failure measured by electrical impedance tomography. Acta Anaesthesiol Scand 50:331–339PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Torsten Meier
    • 1
  • Henning Luepschen
    • 3
  • Jan Karsten
    • 1
  • Thorsten Leibecke
    • 2
  • Martin Großherr
    • 1
  • Hartmut Gehring
    • 1
  • Steffen Leonhardt
    • 3
  1. 1.Department of AnesthesiologyUniversity Medical Center Schleswig-Holstein, Campus LübeckLübeckGermany
  2. 2.Department of RadiologyUniversity Medical Center Schleswig-HolsteinLübeckGermany
  3. 3.Helmholtz Institute for Biomedical EngineeringRWTH Aachen UniversityAachenGermany

Personalised recommendations