Intensive Care Medicine

, 33:1549 | Cite as

The prognostic value of muscle StO2 in septic patients

  • Jacques Creteur
  • Tiziana Carollo
  • Giulia Soldati
  • Gustavo Buchele
  • Daniel De Backer
  • Jean-Louis Vincent
Original

Abstract

Objective:

To quantify sepsis-induced alterations in changes in muscle tissue oxygenation (StO2) after an ischemic challenge using near-infrared spectroscopy (NIRS), and to test the hypothesis that these alterations are related to outcome.

Design

Prospective study.

Setting

Thirty-one-bed, university hospital Department of Intensive Care.

Patients

Seventy-two patients with severe sepsis or septic shock, 18 hemodynamically stable, acutely ill patients without infection, and 18 healthy volunteers.

Interventions

Three-minute occlusion of the brachial artery using a cuff inflated 50 mmHg above systolic arterial pressure.

Measurements and main results

Thenar eminence StO2 was measured continuously by NIRS before (StO2baseline), during, and after the 3-min occlusion. Changes in StO2 were assessed by the slope of increase in StO2 during the first 14 s following the ischemic period and by the difference between the maximum StO2 and StO2baseline (Δ). The slope was lower in septic patients than in controls and volunteers [2.3 (1.3–3.6), 4.8 (3.5–6.0), and 4.7 (3.2–6.3) %/s, p < 0.001]. Δ was also significantly lower in septic patients than in the other groups. Slopes were lower in septic patients with than without shock [2.0 (1.2–2.9) vs 3.2 (1.8–4.5) %/s, p < 0.05]. In 52 septic patients, in whom the slope was obtained every 24 h for 48 h, slopes were higher in survivors than in non-survivors and tended to increase in survivors but not in non-survivors.

Conclusions

Altered recovery in StO2 after an ischemic challenge is frequent in septic patients and more pronounced in the presence of shock. The presence and persistence of these alterations in the first 24 h of sepsis are associated with worse outcome.

Keywords

Near-infrared spectroscopy Sepsis Hypoxia/anoxia Microcirculation Endothelial function Tissue oxygenation 

Supplementary material

References

  1. 1.
    Lam C, Tyml K, Martin C, Sibbald W (1994) Microvascular perfusion is impaired in a rat model of normotensive sepsis. J Clin Invest 94:2077–2083PubMedGoogle Scholar
  2. 2.
    De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104PubMedCrossRefGoogle Scholar
  3. 3.
    Ellis CG, Bateman RM, Sharpe MD, Sibbald WJ, Gill R (2002) Effect of a maldistribution of microvascular blood flow on capillary O(2) extraction in sepsis. Am J Physiol Heart Circ Physiol 282:H156–H164PubMedGoogle Scholar
  4. 4.
    Astiz ME, DeGent GE, Lin RY, Rackow EC (1995) Microvascular function and rheologic changes in hyperdynamic sepsis. Crit Care Med 23:265–271PubMedCrossRefGoogle Scholar
  5. 5.
    Croner RS, Hoerer E, Kulu Y, Hackert T, Gebhard MM, Herfarth C, Klar E (2006) Hepatic platelet and leukocyte adherence during endotoxemia. Crit Care 10:R15PubMedCrossRefGoogle Scholar
  6. 6.
    Piagnerelli M, Boudjeltia KZ, Vanhaeverbeek M, Vincent JL (2003) Red blood cell rheology in sepsis. Intensive Care Med 29:1052–1061PubMedCrossRefGoogle Scholar
  7. 7.
    Bateman RM, Jagger JE, Sharpe MD, Ellsworth ML, Mehta S, Ellis CG (2001) Erythrocyte deformability is a nitric oxide-mediated factor in decreased capillary density during sepsis. Am J Physiol Heart Circ Physiol 280:H2848–H2856PubMedGoogle Scholar
  8. 8.
    Piper RD, Pitt-Hyde M, Li F, Sibbald WJ, Potter RF (1996) Microcirculatory changes in rat skeletal muscle in sepsis. Am J Respir Crit Care Med 154:931–937PubMedGoogle Scholar
  9. 9.
    Tyml K, Yu J, McCormack DG (1998) Capillary and arteriolar responses to local vasodilators are impaired in a rat model of sepsis. J Appl Physiol 84:837–844PubMedGoogle Scholar
  10. 10.
    Gocan NC, Scott JA, Tyml K (2000) Nitric oxide produced via neuronal NOS may impair vasodilatation in septic rat skeletal muscle. Am J Physiol Heart Circ Physiol 278:H1480–H1489PubMedGoogle Scholar
  11. 11.
    Hollenberg SM, Broussard M, Osman J, Parrillo JE (2000) Increased microvascular reactivity and improved mortality in septic mice lacking inducible nitric oxide synthase. Circ Res 86:774–778PubMedGoogle Scholar
  12. 12.
    De Blasi RA, Palmisani S, Alampi D, Mercieri M, Romano R, Collini S, Pinto G (2005) Microvascular dysfunction and skeletal muscle oxygenation assessed by phase-modulation near-infrared spectroscopy in patients with septic shock. Intensive Care Med 31:1661–1668PubMedCrossRefGoogle Scholar
  13. 13.
    Mancini DM, Bolinger L, Li H, Kendrick K, Chance B, Wilson JR (1994) Validation of near-infrared spectroscopy in humans. J Appl Physiol 77:2740–2747PubMedGoogle Scholar
  14. 14.
    Vallet B (1998) Vascular reactivity and tissue oxygenation. Intensive Care Med 24:3–11PubMedCrossRefGoogle Scholar
  15. 15.
    Young JD, Cameron EM (1995) Dynamics of skin blood flow in human sepsis. Intensive Care Med 21:669–674PubMedCrossRefGoogle Scholar
  16. 16.
    Neviere R, Mathieu D, Chagnon JL, Lebleu N, Millien JP, Wattel F (1996) Skeletal muscle microvascular blood flow and oxygen transport in patients with severe sepsis. Am J Respir Crit Care Med 153:191–195PubMedGoogle Scholar
  17. 17.
    Knotzer H, Pajk W, Dunser MW, Maier S, Mayr AJ, Ritsch N, Friesenecker B, Hasibeder WR (2006) Regional microvascular function and vascular reactivity in patients with different degrees of multiple organ dysfunction syndrome. Anesth Analg 102:1187–1193PubMedCrossRefGoogle Scholar
  18. 18.
    Haisjackl M, Hasibeder W, Klaunzer S, Altenberger H, Koller W (1990) Diminished reactive hyperemia in the skin of critically ill patients. Crit Care Med 18:813–818PubMedCrossRefGoogle Scholar
  19. 19.
    Carollo T, Creteur J, De Backer D, Vincent JL (2004) Persistent altered microvascular reactivity is predictive of mortality in septic patients. Intensive Care Med 30 (Suppl 1):S163 (abstract)Google Scholar
  20. 20.
    Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med 29:530–538PubMedGoogle Scholar
  21. 21.
    Cui W, Kumar C, Chance B (1991) Experimental study of migration depth for the photons measured at sample surface. Proc SPIE 1431:180–191CrossRefGoogle Scholar
  22. 22.
    Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13:818–829PubMedCrossRefGoogle Scholar
  23. 23.
    Vincent JL, Moreno R, Takala J, Willatts S, Mendonça A de, Bruining H, Reinhart CK, Suter PM, Thijs LG (1996) The SOFA (Sepsis-Related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med 22:707–710PubMedGoogle Scholar
  24. 24.
    Wariar R, Gaffke JN, Haller RG, Bertocci LA (2000) A modular NIRS system for clinical measurement of impaired skeletal muscle oxygenation. J Appl Physiol 88:315–325PubMedGoogle Scholar
  25. 25.
    Pareznik R, Knezevic R, Voga G, Podbregar M (2006) Changes in muscle tissue oxygenation during stagnant ischemia in septic patients. Intensive Care Med 32:87–92PubMedCrossRefGoogle Scholar
  26. 26.
    Boushel R, Langberg H, Olesen J, Gonzales-Alonzo J, Bulow J, Kjaer M (2001) Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports 11:213–222PubMedCrossRefGoogle Scholar
  27. 27.
    Pohl U, Busse R (1989) Hypoxia stimulates release of endothelium-derived relaxant factor. Am J Physiol 256:H1595–H1600PubMedGoogle Scholar
  28. 28.
    Curtis SE, Vallet B, Winn MJ, Caufield JB, King CE, Chapler CK, Cain SM (1995) Role of the vascular endothelium in O2 extraction during progressive ischemia in canine skeletal muscle. J Appl Physiol 79:1351–1360PubMedGoogle Scholar
  29. 29.
    Greenberg B, Kishiyama S (1993) Endothelium-dependent and -independent responses to severe hypoxia in rat pulmonary artery. Am J Physiol 265:H1712–H1720PubMedGoogle Scholar
  30. 30.
    Vallet B, Curtis SE, Winn MJ, King CE, Chapler CK, Cain SM (1994) Hypoxic vasodilation does not require nitric oxide (EDRF/NO) synthesis. J Appl Physiol 76:1256–1261PubMedCrossRefGoogle Scholar
  31. 31.
    Michiels C, Arnould T, Knott I, Dieu M, Remacle J (1993) Stimulation of prostaglandin synthesis by human endothelial cells exposed to hypoxia. Am J Physiol 264:C866–C874PubMedGoogle Scholar
  32. 32.
    Vallet B, Curtis SE, Guery B, Mangalaboyi J, Menager P, Cain SM, Chopin C, Dupuis BA (1995) ATP-sensitive K+ channel blockade impairs O2 extraction during progressive ischemia in pig hindlimb. J Appl Physiol 79:2035–2042PubMedGoogle Scholar
  33. 33.
    Davies NW (1990) Modulation of ATP-sensitive K+ channels in skeletal muscle by intracellular protons. Nature 343:375–377PubMedCrossRefGoogle Scholar
  34. 34.
    Keung EC, Li Q (1991) Lactate activates ATP-sensitive potassium channels in guinea pig ventricular myocytes. J Clin Invest 88:1772–1777PubMedCrossRefGoogle Scholar
  35. 35.
    Landry DW, Oliver JA (2001) The pathogenesis of vasodilatory shock. N Engl J Med 345:588–595PubMedCrossRefGoogle Scholar
  36. 36.
    Vallet B (2002) Endothelial cell dysfunction and abnormal tissue perfusion. Crit Care Med 30:S229–S234PubMedCrossRefGoogle Scholar
  37. 37.
    Gustafsson F, Holstein-Rathlou N (1999) Conducted vasomotor responses in arterioles: characteristics, mechanisms and physiological significance. Acta Physiol Scand 167:11–21PubMedCrossRefGoogle Scholar
  38. 38.
    Tyml K, Wang X, Lidington D, Ouellette Y (2001) Lipopolysaccharide reduces intercellular coupling in vitro and arteriolar conducted response in vivo. Am J Physiol Heart Circ Physiol 281:H1397–H1406PubMedGoogle Scholar
  39. 39.
    Vallet B, Wiel E (2001) Endothelial cell dysfunction and coagulation. Crit Care Med 29:S36–S41PubMedCrossRefGoogle Scholar
  40. 40.
    Kubli S, Boegli Y, Ave AD, Liaudet L, Revelly JP, Golay S, Broccard A, Waeber B, Schaller MD, Feihl F (2003) Endothelium-dependent vasodilation in the skin microcirculation of patients with septic shock. Shock 19:274–280PubMedCrossRefGoogle Scholar
  41. 41.
    Bateman RM, Sharpe MD, Ellis CG (2003) Bench-to-bedside review: microvascular dysfunction in sepsis: hemodynamics, oxygen transport, and nitric oxide. Crit Care 7:359–373PubMedCrossRefGoogle Scholar
  42. 42.
    Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831PubMedCrossRefGoogle Scholar
  43. 43.
    van Beekvelt MC, Borghuis MS, van Engelen BG, Wevers RA, Colier WN (2001) Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle. Clin Sci (Lond) 101:21–28CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jacques Creteur
    • 1
  • Tiziana Carollo
    • 1
  • Giulia Soldati
    • 1
  • Gustavo Buchele
    • 1
  • Daniel De Backer
    • 1
  • Jean-Louis Vincent
    • 1
  1. 1.Department of Intensive CareErasme University Hospital, Free University of BrusselsBrusselsBelgium

Personalised recommendations