Intensive Care Medicine

, Volume 33, Issue 8, pp 1444–1451

Performance of noninvasive ventilation modes on ICU ventilators during pressure support: a bench model study

  • Laurence Vignaux
  • Didier Tassaux
  • Philippe Jolliet
Experimental

Abstract

Objective

Noninvasive ventilation (NIV) is often applied with ICU ventilators. However, leaks at the patient-ventilator interface interfere with several key ventilator functions. Many ICU ventilators feature an NIV-specific mode dedicated to preventing these problems. The present bench model study aimed to evaluate the performance of these modes.

Design and setting

Bench model study in an intensive care research laboratory of a university hospital.

Methods

Eight ICU ventilators, widely available in Europe and featuring an NIV mode, were connected by an NIV mask to a lung model featuring a plastic head to mimic NIV conditions, driven by an ICU ventilator imitating patient effort. Tests were conducted in the absence and presence of leaks, the latter condition with and without activation of the NIV mode. Trigger delay, trigger-associated inspiratory workload, and pressurization were tested in conditions of normal respiratory mechanics, and cycling was also assessed in obstructive and restrictive conditions.

Results

On most ventilators leaks led to an increase in trigger delay and workload, a decrease in pressurization, and delayed cycling. On most ventilators the NIV mode partly or totally corrected these problems, but with large variations between machines. Furthermore, on some ventilators the NIV mode worsened the leak-induced dysfunction.

Conclusions

The results of this bench-model NIV study confirm that leaks interfere with several key functions of ICU ventilators. Overall, NIV modes can correct part or all of this interference, but with wide variations between machines in terms of efficiency. Clinicians should be aware of these differences when applying NIV with an ICU ventilator.

Keywords

Noninvasive ventilation Mechanical ventilation Mechanical ventilators 

Supplementary material

References

  1. 1.
    Peter JV, Moran JL, Hughes JP (2002) Noninvasive mechanical ventilation in acute respiratory failure—a meta-analysis update. Crit Care Med 30:555–562PubMedCrossRefGoogle Scholar
  2. 2.
    Liesching T, Kwok H, Hill NS (2003) Acute applications of noninvasive positive pressure ventilation. Chest 124:699–713PubMedCrossRefGoogle Scholar
  3. 3.
    Ferrer M, Esquinas A, Leon M, Gonzalez G, Alarcon A, Torres A (2003) Noninvasive ventilation in severe hypoxemic respiratory failure. Am J Respir Crit Care Med 168:1438–1444PubMedCrossRefGoogle Scholar
  4. 4.
    Antonelli M, Conti G, Moro ML, Esquinas A, Gonzalez-Diaz G, Confalonieri M, Pelaia P, Principi T, Gregoretti C, Beltrame F, Pennisi MA, Arcangeli A, Proietti R, Passariello M, Meduri GU (2001) Predictors of failure of noninvasive positive pressure ventilation in patients with acute hypoxemic respiratory failure: a multi-center study. Intensive Care Med 27:1718–1728PubMedCrossRefGoogle Scholar
  5. 5.
    Carlucci A, Richard JC, Wysocki M, Lepage E, Brochard L (2001) Noninvasive versus conventional mechanical ventilation. An epidemiologic survey. Am J Respir Crit Care Med 163:874–880PubMedGoogle Scholar
  6. 6.
    Bernstein G, Knodel E, Heldt GP (1995) Airway leak size in neonates and autocycling of three flow-triggered ventilators. Crit Care Med 23:1739–1744PubMedCrossRefGoogle Scholar
  7. 7.
    Calderini E, Confalonieri M, Puccio PG, Francavilla N, Stella L, Gregoretti C (1999) Patient-ventilator asynchrony during noninvasive ventilation: the role of expiratory trigger. Intensive Care Med 25:662–667PubMedCrossRefGoogle Scholar
  8. 8.
    Prinianakis G, Delmastro M, Carlucci A, Ceriana P, Nava S (2004) Effect of varying the pressurisation rate during noninvasive pressure support ventilation. Eur Respir J 23:314–320PubMedCrossRefGoogle Scholar
  9. 9.
    Schettino GP, Tucci MR, Sousa R, Valente Barbas CS, Passos Amato MB, Carvalho CR (2001) Mask mechanics and leak dynamics during noninvasive pressure support ventilation: a bench study. Intensive Care Med 27:1887–1891PubMedCrossRefGoogle Scholar
  10. 10.
    Tobin MJ, Jubran A, Laghi F (2001) Patient-ventilator interaction. Am J Respir Crit Care Med 163:1059–1063PubMedGoogle Scholar
  11. 11.
    Kondili E, Prinianakis G, Georgopoulos D (2003) Patient-ventilator interaction. Br J Anaesth 91:106–119PubMedCrossRefGoogle Scholar
  12. 12.
    Moore MJ, Schmidt GA (2000) Non-invasive ventilation: why does it fail? In Vincent JL (ed) Yearbook of intensive care and emergency medicine. Springer, Berlin Heidelberg New York, pp 318–327Google Scholar
  13. 13.
    Peerless JR, Davies A, Klein D, Yu D (1999) Skin complications in the intensive care unit. Clin Chest Med 20:453–467PubMedCrossRefGoogle Scholar
  14. 14.
    Miyoshi E, Fujino Y, Uchiyama A, Mashimo T, Nishimura M (2005) Effects of gas leak on triggering function, humidification, and inspiratory oxygen fraction during noninvasive positive airway pressure ventilation. Chest 128:3691–3698PubMedCrossRefGoogle Scholar
  15. 15.
    Meyer TJ, Pressman MR, Benditt J, McCool FD, Millman RP, Natarajan R, Hill NS (1997) Air leaking through the mouth during nocturnal nasal ventilation: effect on sleep quality. Sleep 20:561–569PubMedGoogle Scholar
  16. 16.
    Mehta S, McCool FD, Hill NS (2001) Leak compensation in positive pressure ventilators: a lung model study. Eur Respir J 17:259–267PubMedCrossRefGoogle Scholar
  17. 17.
    Battisti A, Tassaux D, Janssens JP, Michotte JB, Jaber S, Jolliet P (2005) Performance characteristics of ten recent bilevel ventilators: a comparative bench study. Chest 127:1784–1792PubMedCrossRefGoogle Scholar
  18. 18.
    Tassaux D, Strasser S, Fonseca S, Dalmas E, Jolliet P (2002) Comparative bench study of triggering, pressurization and cycling between the home ventilator VPAPII® and three ICU ventilators. Intensive Care Med 28:1254–1261PubMedCrossRefGoogle Scholar
  19. 19.
    Richard JC, Carlucci A, Breton L, Langlais N, Jaber S, Maggiore S, Fougere S, Harf A, Brochard L (2002) Bench testing of pressure support ventilation with three different generations of ventilators. Intensive Care Med 28:1049–1057PubMedCrossRefGoogle Scholar
  20. 20.
    Aslanian P, El Atrous S, Isabey D, Valente E, Corsi D, Harf A, Lemaire F, Brochard L (1998) Effects of flow triggering on breathing effort during partial ventilatory support. Am J Respir Crit Care Med 157:135–143PubMedGoogle Scholar
  21. 21.
    Nava S, Bruschi C, Rubini F, Palo A, Iotti G, Braschi A (1995) Respiratory response and inspiratory effort during pressure support ventilation in COPD patients. Intensive Care Med 21:871–879PubMedCrossRefGoogle Scholar
  22. 22.
    Tassaux D, Michotte JB, Gainnier M, Gratadour P, Fonseca S, Jolliet P (2004) Expiratory trigger setting in pressure Support Ventilation: from mathematical model to bedside. Crit Care Med 32:1844–1850PubMedCrossRefGoogle Scholar
  23. 23.
    Tassaux D, Gainnier M, Battisti A, Jolliet P (2005) Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med 172:1283–1289PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Laurence Vignaux
    • 1
  • Didier Tassaux
    • 1
    • 2
  • Philippe Jolliet
    • 1
  1. 1.Intensive CareUniversity HospitalGeneva 14Switzerland
  2. 2.AnesthesiologyUniversity HospitalGeneva 14Switzerland

Personalised recommendations