Intensive Care Medicine

, Volume 33, Issue 9, pp 1524–1532

Prolonged use of carbapenems and colistin predisposes to ventilator-associated pneumonia by pandrug-resistant Pseudomonas aeruginosa

  • Spyros D. Mentzelopoulos
  • Maria Pratikaki
  • Evangelia Platsouka
  • Helen Kraniotaki
  • Dimitris Zervakis
  • Antonia Koutsoukou
  • Serafim Nanas
  • Olga Paniara
  • Charis Roussos
  • Evangelos Giamarellos-Bourboulis
  • Christina Routsi
  • Spyros G. Zakynthinos
Original
  • 323 Downloads

Abstract

Objective

We present our experience with five cases of pandrug-resistant Pseudomonas aeruginosa ventilator-associated pneumonia (VAP) and analysis of risk factors.

Design and setting

Case-control study in a 15-bed intensive care unit (ICU).

Patients and participants

The study included 5 cases and 20 controls. Each case patient was matched to four contemporary controls according to gender, prior hospital admissions, hospitalization duration, ICU admission cause, Acute Physiology and Chronic Health Evaluation (APACHE) II and Sequential Organ Function Assessment (SOFA) scores on ICU admission, and length of ICU stay, and mechanical ventilation duration until first VAP episode by a multidrug-resistant bacterium.

Measurements and results

Recorded variables included age, gender, daily APACHE II and SOFA scores, patient medication, treatment interventions, positive cultures and corresponding antibiograms, occurrence of infection, sepsis, and septic shock, other ICU-associated morbidity, length of ICU stay and mechanical ventilation, and patient outcome. Healthcare worker and environmental cultures, and a hand-disinfection survey were performed. Pandrug-resistant P. aeruginosa isolates belonged to the same genotype and were blaVIM–1-like gene positive. The outbreak resolved following reinforcement of infection-control measures (September 27). The sole independent predictor for pandrug-resistant P. aeruginosa VAP was combined use of carbapenem for more than 20 days and colistin use for and more than 13 days (odds ratio 76.0; 95% confidence interval 3.7–1487.6). An additional risk factor was more than 78 open suctioning procedures during 6–26 September (odds ratio 16.0; 95% confidence interval 1.4–185.4).

Conclusions

Prolonged carbapenem-colistin use predisposes to VAP by pandrug-resistant P. aeruginosa. Cross-transmission may be facilitated by open suctioning.

Keywords

Disease outbreaks Pseudomonas aeruginosa Carbapenems β-Lactamases Colistin 

Supplementary material

134_2007_683_MOESM1_ESM.doc (394 kb)
Electronic Supplementary Material (DOC 395K)

References

  1. 1.
    Ferrara AM (2006) Potentially multidrug-resistant non-fermentative Gram-negative pathogens causing nosocomial pneumonia. Int J Antimicrob Agents 27:183–195PubMedCrossRefGoogle Scholar
  2. 2.
    Murray CK, Hospenthal DR (2005) Treatment of multidrug resistant Acinetobacter. Curr Opin Infect Dis 18:502–506PubMedCrossRefGoogle Scholar
  3. 3.
    Obritsch MD, Fish DN, Maclaren R, Jung R (2005) Nosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: epidemiology and treatment options. Pharmacotherapy 25:1353–1364PubMedCrossRefGoogle Scholar
  4. 4.
    Falagas ME, Blitziotis IA, Kasiakou SK, Samonis G, Athnassopoulou P, Michalopoulos A (2005) Outcome of infections due to pandrug-resistant (PDR) gram-negative bacteria. BMC Infect Dis 5:24–31PubMedCrossRefGoogle Scholar
  5. 5.
    Routsi C, Platsouka E, Willems RJL, Bonten MJ, Paniara O, Saroglou G, Roussos C (2003) Detection of enterococcal surface protein gene (esp) and amplified length polymorphism typing of glycopeptide-resistant Enterococcus faecium during its emergence in a greek intensive care unit. J Clin Microbiol 41:5472–5746CrossRefGoogle Scholar
  6. 6.
    Giacometti A, Cirioni O, Del Prete MS, Barchesi F, Fortuna M, Drenaggi D, Scalise G (2000) In vitro activities of membrane-active peptides alone and in combination with clinically used antimicrobial agents against Stenotrophomonas maltophilia. Antimicrob Agents Chemother 44:1716–1719PubMedCrossRefGoogle Scholar
  7. 7.
    Kasiakou SK, Michalopoulos A, Soteriades ES, Samonis G, Sermaides GJ, Falagas ME (2005) Combination therapy with intravenous colistin for management of infections due to multidrug-resistant Gram-negative bacteria in patients without cystic fibrosis. Antimicrob Agents Chemother 49:3136–3146PubMedCrossRefGoogle Scholar
  8. 8.
    Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM (1988) CDC definitions for nosocomial infections, 1988. Am J Infect Control 16:128–140PubMedCrossRefGoogle Scholar
  9. 9.
    American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference (1992) Definitions for sepsis and multiple organ failure and guidelines for the use of innovative therapies in sepsis. Chest 101:1644–1655Google Scholar
  10. 10.
    Clinical Laboratory Standards Institute (2006) Performance standards for antimicrobial susceptibility testing; sixteenth Informational Supplement M100-S16Google Scholar
  11. 11.
    San Gabriel PS, Zhou J, Tabibi S, Chen Y, Trauzzi M Sairman L (2004) Antimicrobial susceptibility and synergy studies of Stenotrophomonas maltophilia isolates from patients with cystic fibrosis. Antimicrob Agents Chemother 48:168–171CrossRefGoogle Scholar
  12. 12.
    Zawacki A, O' Rourke E, Potter-Bynoe G, Macone A, Harbarth S, Goldmann D (2004) An outbreak of Pseudomonas aeruginosa pneumonia and bloodstream infection associated with intermittent otitis externa in a healthcare worker. Infect Control Hosp Epidemiol 25:1083–1089PubMedCrossRefGoogle Scholar
  13. 13.
    Kraniotaki E, Manganelli R, Platsouka E, Grossato A, Paniara O, Palù G (2006) Molecular investigation of an outbreak of multidrug-resistant Acinetobacter baumanni, with characterization of class 1 integrons. Int J Antimicrob Agents 28:193–199PubMedCrossRefGoogle Scholar
  14. 14.
    Husni RN, Goldstein LS, Arroliga C, Hall GS, Fatica C, Stoller JK, Gordon SM (1999) Risk factors for an outbreak of multi-drug-resistant Acinetobacter pneumonia among intubated patients. Chest 115:1378–1382PubMedCrossRefGoogle Scholar
  15. 15.
    Laupland K, Perkins MD, Church DL, Gregson DB, Louie TJ, Conly JM, Elsayed S, Pitout JD (2005) Population-based epidemiological study of infections caused by carbapenem-resistant pseudomonas aeruginosa in the Calgary Health Region: importance of metallo-b-lactamase (MBL)-producing strains. J Infect Dis 192:1606–1612PubMedCrossRefGoogle Scholar
  16. 16.
    Katz MH (1999) Introduction. In: Katz MH (ed). Multivariable analysis, 1st edn. Cambridge University Press, New York, pp 1–16Google Scholar
  17. 17.
    Ortega B, Groeneveld BJ, Schultsz C (2004) Endemic multidrug-resistant Pseudomonas aeruginosa in critically ill patients. Infect Control Hosp Epidemiol 25:825–831PubMedCrossRefGoogle Scholar
  18. 18.
    El Shafie SS, Alishaq M, Leni Garcia M (2004) Investigation of an outbreak of multidrug-resistant Acinetobacter baumannii in trauma intensive care unit. J Hosp Infect 56:101–105PubMedCrossRefGoogle Scholar
  19. 19.
    Denton M, Kerr K, Mooney L, Mooney L, Keer V, Raigopal A Brownlee K, Arundel P, Conway S (2002) Transmission of colistin-resistant Pseudomonas aeruginosa between patients attending a pediatric cystic fibrosis center. Pediatr Pulmonol 34:257–261PubMedCrossRefGoogle Scholar
  20. 20.
    Li J, Nation RL, Milne RW, Turnige JD, Coulthard K (2005) Evaluation of colistin as an agent against multiresistant Gram negative bacteria. Int J Antimicrob Agents 25:11–25PubMedCrossRefGoogle Scholar
  21. 21.
    Muhle SA, Tam JP (2001) Design of Gram negative selective antimicrobial peptides. Biochemistry 40:5777–5785PubMedCrossRefGoogle Scholar
  22. 22.
    Moskowitz SM, Ernst RK, Miller SI (2004) PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J Bacteriol 186:575–579PubMedCrossRefGoogle Scholar
  23. 23.
    Dietz H, Pfeifle D, Wiedemann B (1997) The signal molecule for β-lactamase induction in Enterobacter cloacae is the anhydromuranyl-pentapeptide. Antimicrob Agents Chemother 41:2113–2120PubMedGoogle Scholar
  24. 24.
    Conrad RS, Galanos C (1989) Fatty acid alterations and polymyxin B binding by lipopolysaccharides from Pseudomonas aeruginosa adapted to polymyxin B resistance. Antimicrob Agents Chemother 33:1724–1728PubMedGoogle Scholar
  25. 25.
    Schmidtchen A, Frick IM, Andersson E, Tapper H, Bjork L (2002) Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 46:157–168PubMedCrossRefGoogle Scholar
  26. 26.
    Vidaur L, Sirgo G, Rodriguez AH, Rello J (2005) Clinical approach to the patient with suspected ventilator-associated pneumonia. Respir Care 50:965–974PubMedGoogle Scholar
  27. 27.
    Jaruratanasirikul S, Sriwiriyajan S, Punyo J (2005) Comparison of the pharmacodynamics of meropenem in patients with ventilator-associated pneumonia following administration by 3-hour infusion or bolus injection. Antimicrob Agents Chemother 49:1337–1339PubMedCrossRefGoogle Scholar
  28. 28.
    Li C, Cutti JL, Nightingale CH, Nicolau DP (2006) Population pharmacokinetic analysis and dosing regimen optimisation of meropenem in adult patients. J Clin Pharmacol 46:1171–1178PubMedCrossRefGoogle Scholar
  29. 29.
    Conte JE Jr, Golden JA, Kerley MJ, Zurlinden E (2005) Intrapulmonary pharmacokinetics and pharmacodynamics of meropenem. Int J Antimicrob Agents 26:449–456PubMedCrossRefGoogle Scholar
  30. 30.
    Santre C, Georges H, Jacquier JM, Leroy O. Beuscart C, Buguin D, Beaucaire G (1995) Amikacin levels in bronchial secretions of 10 pneumonia patients with respiratory support treated once daily versus twice daily. Antimicrob Agents Chemother 39:264–267PubMedGoogle Scholar
  31. 31.
    Lynch JP III (2001) Hospital-acquired pneumonia: risk factors, microbiology, and prevention. Chest 119:373–384CrossRefGoogle Scholar
  32. 32.
    Sandiumenge A, Diaz E, Bodi M, Rello J (2003) Therapy of ventilator-associated pneumonia. A patient-based approach based on the ten rules of “The Tarragona Strategy”. Intensive Care Med 29:876–883PubMedGoogle Scholar
  33. 33.
    Pagani L, Colinon C, Migliavacca R, Labonia M, Docquier JD, Nucleo E, Spalla M, Li Bergoli M, Rossolini GM (2005) Nosocomial outbreak caused by multidrug-resistant Pseudomonas aeruginosa producing IMP-13 metallo-β-lactamase. J Clin Microbiol 43:3824–3828PubMedCrossRefGoogle Scholar
  34. 34.
    Deplano A, Denis O, Poirel L, Hocquet D, Nonhoff C, Byl B, Nordmann P, Vincent JL, Struelens MJ (2005) Molecular characterization of an endemic clone of panantibiotic-resistant Pseudomonas aeruginosa. J Clin Microbiol 43:1198–1204PubMedCrossRefGoogle Scholar
  35. 35.
    Wang CY, Jerng JS, Cheng KY, Lee LN, Yu CJ, Hsueh PR, Yang PC (2006) Pandrug-resistant Pseudomonas aeruginosa among hospitalised patients: clinical features, risk-factors and outcomes. Clin Microbiol Infect 12:63–68PubMedCrossRefGoogle Scholar
  36. 36.
    Peduzzi P, Concatto J, Kemper E, Holford TR, Feinstein AR (1996) A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 49:1373–1379PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Spyros D. Mentzelopoulos
    • 1
  • Maria Pratikaki
    • 2
  • Evangelia Platsouka
    • 2
  • Helen Kraniotaki
    • 2
  • Dimitris Zervakis
    • 1
  • Antonia Koutsoukou
    • 1
  • Serafim Nanas
    • 1
  • Olga Paniara
    • 2
  • Charis Roussos
    • 1
  • Evangelos Giamarellos-Bourboulis
    • 1
  • Christina Routsi
    • 1
  • Spyros G. Zakynthinos
    • 1
  1. 1.First Department of Critical CareUniversity of Athens Medical SchoolAthensGreece
  2. 2.Department of MicrobiologyEvaggelismos General HospitalAthensGreece

Personalised recommendations