Intensive Care Medicine

, Volume 33, Issue 11, pp 1892–1899 | Cite as

Occult hypoperfusion and mortality in patients with suspected infection

  • Michael D. HowellEmail author
  • Michael Donnino
  • Peter Clardy
  • Daniel Talmor
  • Nathan I. Shapiro



To determine, in the early stages of suspected clinically significant infection, the independent relationship of the presenting venous lactate level to 28-day in-hospital mortality.


Prospective, observational cohort study.


Urban, university tertiary-care hospital.


One thousand two hundred and eighty seven adults admitted through the emergency department who had clinically suspected infection and a lactate measurement.

Measurements and results

Seventy-three [5.7% (95% CI 4.4–6.9%)] patients died in the hospital within 28 days. Lactate level was strongly associated with 28-day in-hospital mortality in univariate analysis (p < 0.0001). When stratified by blood pressure, lactate remained associated with mortality (p < 0.0001). Normotensive patients with a lactate level ≥ 4.0 mmol/l had a mortality rate of 15.0% (6.0–24%). Patients with either septic shock or lactate ≥ 4.0 mmol/l had a mortality rate of 28.3% (21.3–35.3%), which was significantly higher than those who had neither [mortality of 2.5% (1.6–3.4%), p < 0.0001]. In a model controlling for age, blood pressure, malignancy, platelet count, and blood urea nitrogen level, lactate remained strongly associated with mortality. Patients with a lactate level of 2.5–4.0 mmol/l had adjusted odds of death of 2.2 (1.1–4.2); those with lactate ≥ 4.0 mmol/l had 7.1 (3.6–13.9) times the odds of death. The model had good discrimination (AUC = 0.87) and was well calibrated.


In patients admitted with clinically suspected infection, the venous lactate level predicts 28-day in-hospital mortality independent of blood pressure and adds significant prognostic information to that provided by other clinical predictors.


Sepsis Infection Lactic acid/lactate Triage Prognosis Risk assessment 

Supplementary material

134_2007_680_MOESM1_ESM.doc (56 kb)
Electronic Supplementary Material (DOC 56K)


  1. 1.
    Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310PubMedCrossRefGoogle Scholar
  2. 2.
    Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377PubMedCrossRefGoogle Scholar
  3. 3.
    Brun-Buisson C, Meshaka P, Pinton P, Vallet B (2004) EPISEPSIS: a reappraisal of the epidemiology and outcome of severe sepsis in French intensive care units. Intensive Care Med 30:580–588PubMedCrossRefGoogle Scholar
  4. 4.
    Alberti C, Brun-Buisson C, Burchardi H, Martin C, Goodman S, Artigas A, Sicignano A, Palazzo M, Moreno R, Boulme R, Lepage E, Le Gall R (2002) Epidemiology of sepsis and infection in ICU patients from an international multicentre cohort study. Intensive Care Med 28:108–121PubMedCrossRefGoogle Scholar
  5. 5.
    Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent JL, Levy MM (2004) Surviving sepsis campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 32:858–873PubMedCrossRefGoogle Scholar
  6. 6.
    Shapiro NI, Howell MD, Talmor D, Lahey D, Ngo L, Buras J, Wolfe RE, Weiss JW, Lisbon A (2006) Implementation and outcomes of the Multiple Urgent Sepsis Therapies (MUST) protocol. Crit Care Med 34:1025–1032PubMedCrossRefGoogle Scholar
  7. 7.
    Kortgen A, Niederprum P, Bauer M (2006) Implementation of an evidence-based “standard operating procedure” and outcome in septic shock. Crit Care Med 34:943–949PubMedCrossRefGoogle Scholar
  8. 8.
    Ander DS, Jaggi M, Rivers E, Rady MY, Levine TB, Levine AB, Masura J, Gryzbowski M (1998) Undetected cardiogenic shock in patients with congestive heart failure presenting to the emergency department. Am J Cardiol 82:888–891PubMedCrossRefGoogle Scholar
  9. 9.
    Rady MY, Rivers EP, Nowak RM (1996) Resuscitation of the critically ill in the ED: responses of blood pressure, heart rate, shock index, central venous oxygen saturation, and lactate. Am J Emerg Med 14:218–225PubMedCrossRefGoogle Scholar
  10. 10.
    Meregalli A, Oliveira RP, Friedman G (2004) Occult hypoperfusion is associated with increased mortality in hemodynamically stable, high-risk, surgical patients. Crit Care 8:R60–65PubMedCrossRefGoogle Scholar
  11. 11.
    Shapiro NI, Howell MD, Talmor D, Nathanson LA, Lisbon A, Wolfe RE, Weiss JW (2005) Serum lactate as a predictor of mortality in emergency department patients with infection. Ann Emerg Med 45:524–528PubMedCrossRefGoogle Scholar
  12. 12.
    Lavery RF, Livingston DH, Tortella BJ, Sambol JT, Slomovitz BM, Siegel JH (2000) The utility of venous lactate to triage injured patients in the trauma center. J Am Coll Surg 190:656–664PubMedCrossRefGoogle Scholar
  13. 13.
    Myint PK, Kamath AV, Vowler SL, Maisey DN, Harrison BD (2005) The CURB (confusion, urea, respiratory rate and blood pressure) criteria in community-acquired pneumonia (CAP) in hospitalised elderly patients aged 65 years and over: a prospective observational cohort study. Age Ageing 34:75–77PubMedCrossRefGoogle Scholar
  14. 14.
    Shapiro NI, Wolfe RE, Moore RB, Smith E, Burdick E, Bates DW (2003) Mortality in Emergency Department Sepsis (MEDS) score: a prospectively derived and validated clinical prediction rule. Crit Care Med 31:670–675PubMedCrossRefGoogle Scholar
  15. 15.
    Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 31:1250–1256PubMedCrossRefGoogle Scholar
  16. 16.
    Blow O, Magliore L, Claridge JA, Butler K, Young JS (1999) The golden hour and the silver day: detection and correction of occult hypoperfusion within 24 hours improves outcome from major trauma. J Trauma 47:964–969PubMedGoogle Scholar
  17. 17.
    Crowl AC, Young JS, Kahler DM, Claridge JA, Chrzanowski DS, Pomphrey M (2000) Occult hypoperfusion is associated with increased morbidity in patients undergoing early femur fracture fixation. J Trauma 48:260–267PubMedGoogle Scholar
  18. 18.
    Broder G, Weil MH (1964) Excess lactate: an index of reversibility of shock in human patients. Science 143:1457–1459PubMedCrossRefGoogle Scholar
  19. 19.
    Bossink AW, Groeneveld AB, Koffeman GI, Becker A (2001) Prediction of shock in febrile medical patients with a clinical infection. Crit Care Med 29:25–31PubMedCrossRefGoogle Scholar
  20. 20.
    Claridge JA, Crabtree TD, Pelletier SJ, Butler K, Sawyer RG, Young JS (2000) Persistent occult hypoperfusion is associated with a significant increase in infection rate and mortality in major trauma patients. J Trauma 48:8–14; discussion 15PubMedGoogle Scholar
  21. 21.
    Wo CC, Shoemaker WC, Appel PL, Bishop MH, Kram HB, Hardin E (1993) Unreliability of blood pressure and heart rate to evaluate cardiac output in emergency resuscitation and critical illness. Crit Care Med 21:218–223PubMedCrossRefGoogle Scholar
  22. 22.
    Bakker J (2001) Lactate: may I have your votes please? Intensive Care Med 27:6–11PubMedCrossRefGoogle Scholar
  23. 23.
    Levraut J, Ichai C, Petit I, Ciebiera JP, Perus O, Grimaud D (2003) Low exogenous lactate clearance as an early predictor of mortality in normolactatemic critically ill septic patients. Crit Care Med 31:705–710PubMedCrossRefGoogle Scholar
  24. 24.
    Astiz M, Rackow EC, Weil MH, Schumer W (1988) Early impairment of oxidative metabolism and energy production in severe sepsis. Circ Shock 26:311–320PubMedGoogle Scholar
  25. 25.
    Levraut J, Ciebiera JP, Chave S, Rabary O, Jambou P, Carles M, Grimaud D (1998) Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med 157:1021–1026PubMedGoogle Scholar
  26. 26.
    Mizock BA, Falk JL (1992) Lactic acidosis in critical illness. Crit Care Med 20:80–93PubMedCrossRefGoogle Scholar
  27. 27.
    Bakker J, Coffernils M, Leon M, Gris P, Vincent JL (1991) Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock. Chest 99:956–962PubMedGoogle Scholar
  28. 28.
    Bakker J, Gris P, Coffernils M, Kahn RJ, Vincent JL (1996) Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg 171:221–226PubMedCrossRefGoogle Scholar
  29. 29.
    Varpula M, Tallgren M, Saukkonen K, Voipio-Pulkki LM, Pettila V (2005) Hemodynamic variables related to outcome in septic shock. Intensive Care Med 31:1066–1071PubMedCrossRefGoogle Scholar
  30. 30.
    Husain FA, Martin MJ, Mullenix PS, Steele SR, Elliott DC (2003) Serum lactate and base deficit as predictors of mortality and morbidity. Am J Surg 185:485–491PubMedCrossRefGoogle Scholar
  31. 31.
    McNelis J, Marini CP, Jurkiewicz A, Szomstein S, Simms HH, Ritter G, Nathan IM (2001) Prolonged lactate clearance is associated with increased mortality in the surgical intensive care unit. Am J Surg 182:481–485PubMedCrossRefGoogle Scholar
  32. 32.
    Jeng JC, Jablonski K, Bridgeman A, Jordan MH (2002) Serum lactate, not base deficit, rapidly predicts survival after major burns. Burns 28:161–166PubMedCrossRefGoogle Scholar
  33. 33.
    Cerovic O, Golubovic V, Spec-Marn A, Kremzar B, Vidmar G (2003) Relationship between injury severity and lactate levels in severely injured patients. Intensive Care Med 29:1300–1305PubMedCrossRefGoogle Scholar
  34. 34.
    Asimos AW, Gibbs MA, Marx JA, Jacobs DG, Erwin RJ, Norton HJ, Thomason M (2000) Value of point-of-care blood testing in emergent trauma management. J Trauma 48:1101–1108PubMedCrossRefGoogle Scholar
  35. 35.
    Jones AE, Fitch MT, Kline JA (2005) Operational performance of validated physiologic scoring systems for predicting in-hospital mortality among critically ill emergency department patients. Crit Care Med 33:974–978PubMedCrossRefGoogle Scholar
  36. 36.
    Nguyen HB, Rivers EP, Havstad S, Knoblich B, Ressler JA, Muzzin AM, Tomlanovich MC (2000) Critical care in the emergency department: a physiologic assessment and outcome evaluation. Acad Emerg Med 7:1354–1361PubMedGoogle Scholar
  37. 37.
    Vincent JL, Yagushi A, Pradier O (2002) Platelet function in sepsis. Crit Care Med 30:S313–317PubMedCrossRefGoogle Scholar
  38. 38.
    Yegenaga I, Hoste E, Van Biesen W, Vanholder R, Benoit D, Kantarci G, Dhondt A, Colardyn F, Lameire N (2004) Clinical characteristics of patients developing ARF due to sepsis/systemic inflammatory response syndrome: results of a prospective study. Am J Kidney Dis 43:817–824PubMedCrossRefGoogle Scholar
  39. 39.
    Lim WS, van der Eerden MM, Laing R, Boersma WG, Karalus N, Town GI, Lewis SA, Macfarlane JT (2003) Defining community acquired pneumonia severity on presentation to hospital: an international derivation and validation study. Thorax 58:377–382PubMedCrossRefGoogle Scholar
  40. 40.
    Society BT. BTS Guidelines for the management of community acquired pneumonia in adults – 2004 update. 2004 April 4, 2004 [cited 2006 October 1, 2006]; available from:
  41. 41.
    Shapiro NI, Howell M, Talmor D (2005) A blueprint for a sepsis protocol. Acad Emerg Med 12:352–359PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Michael D. Howell
    • 1
    Email author
  • Michael Donnino
    • 2
  • Peter Clardy
    • 1
  • Daniel Talmor
    • 3
  • Nathan I. Shapiro
    • 2
  1. 1.Division of Pulmonary and Critical Care Medicine, Department of MedicineBeth Israel Deaconess Medical Center and Harvard Medical School, KB-23BostonUSA
  2. 2.Department of Emergency MedicineBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUSA
  3. 3.Department of Anesthesia, Critical Care and Pain MedicineBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUSA

Personalised recommendations