Intensive Care Medicine

, Volume 33, Issue 10, pp 1771–1777

Prone equals prone? Impact of positioning techniques on respiratory function in anesthetized and paralyzed healthy children

  • Britta S. von Ungern-Sternberg
  • Jürg Hammer
  • Franz J. Frei
  • Eva-Maria Jordi Ritz
  • Andreas Schibler
  • Thomas O. Erb
Pediatric Original



Although the prone position is effectively used to improve oxygenation, its impact on functional residual capacity is controversial. Different techniques of body positioning might be an important confounding factor. The aim of this study was to determine the impact of two different prone positioning techniques on functional residual capacity and ventilation distribution in anesthetized, preschool-aged children.


Functional residual capacity and lung clearance index, a measure of ventilation homogeneity, were calculated using a sulfur-hexafluoride multibreath washout technique. After intubation, measurements were taken in the supine position and, in random order, in the flat prone position and the augmented prone position (gel pads supporting the pelvis and the upper thorax).


Pediatric anesthesia unit of university hospital.

Patients and participants

Thirty preschool children without cardiopulmonary disease undergoing elective surgery.

Measurements and results

Mean (range) age was 48.5 (24–80) months, weight 17.2 (10.5–26.9) kg, functional residual capacity (mean ± SD) 22.9 ± 6.2 −1 in the supine position and 23.3 ± 5.6 −1 in the flat prone position, while lung clearance indices were 8.1 ± 2.3 vs. 7.9 ± 2.3, respectively. In contrast, functional residual capacity increased to 27.6 ± 6.5 −1 (p< 0.001) in the augmented prone position while at the same time the lung clearance index decreased to 6.7 ± 0.9 (p< 0.001).


Functional residual capacity and ventilation distribution were similar in the supine and flat prone positions, while these parameters improved significantly in the augmented prone position, suggesting that the technique of prone positioning has major implications for pulmonary function.


Anesthesia, general Respiratory function, pediatric Functional residual capacity Ventilation distribution 


  1. 1.
    Bryan AC (1974) Comments of a devil's advocate. Am Rev Respir Dis 110 [Suppl]:143–144PubMedGoogle Scholar
  2. 2.
    Murdoch IA, Storman MO (1994) Improved arterial oxygenation in children with the adult respiratory distress syndrome: the prone position. Acta Paediatr 83:1043–1046PubMedGoogle Scholar
  3. 3.
    Gattinoni L, Pelosi P, Vitale G, Pesenti A, D'Andrea L, Mascheroni D (1991) Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure. Anesthesiology 74:15–23PubMedCrossRefGoogle Scholar
  4. 4.
    Douglas WW, Rehder K, Beynen FM, Sessler AD, Marsh HM (1977) Improved oxygenation in patients with acute respiratory failure: the prone position. Am Rev Respir Dis 115:559–566PubMedGoogle Scholar
  5. 5.
    Langer M, Mascheroni D, Marcolin R, Gattinoni L (1988) The prone position in ARDS patients. A clinical study. Chest 94:103–107PubMedGoogle Scholar
  6. 6.
    Wagaman MJ, Shutack JG, Moomjian AS, Schwartz JG, Shaffer TH, Fox WW (1979) Improved oxygenation and lung compliance with prone positioning in neonates. J Pediatr 94:787–791PubMedCrossRefGoogle Scholar
  7. 7.
    Agostini W, Mead J (1964) Statics of the respiratory system. In: Fenn WO, Rhan H (eds.) Handbook of physiology, vol I: Respiration. American Physiological Society, Washington, DC, pp 387–409Google Scholar
  8. 8.
    Numa AH, Hammer J, Newth CJ (1997) Effect of prone and supine positions on functional residual capacity, oxygenation, and respiratory mechanics in ventilated infants and children. Am J Respir Crit Care Med 156:1185–1189PubMedGoogle Scholar
  9. 9.
    Pelosi P, Croci M, Calappi E, Cerisara M, Mulazzi D, Vicardi P, Gattinoni L (1995) The prone positioning during general anesthesia minimally affects respiratory mechanics while improving functional residual capacity and increasing oxygen tension. Anesth Analg 80:955–960PubMedCrossRefGoogle Scholar
  10. 10.
    Mansell A, Bryan C, Levison H (1972) Airway closure in children. J Appl Physiol 33:711–714PubMedGoogle Scholar
  11. 11.
    Nunn JF (1987) Elastic forces and lung volumes. In: Nunn JF (ed) Applied respiratory physiology, 3rd edn. Butterworth, London, pp 23–45Google Scholar
  12. 12.
    Lumb AB (2000) Pregnancy, neonates and children. In: Nunn's applied respiratory physiology, 5th edn. Butterworth-Heinemann, Oxford, pp 319–333Google Scholar
  13. 13.
    von Ungern-Sternberg BS, Hammer J, Frei FJ, Erb TO (2006) Prone equals prone? – Impact of different techniques of body positioning on functional residual capacity and ventilation distribution in anaesthetised, paralysed pre-school children (abstract). Paed Anaesth 16:1299Google Scholar
  14. 14.
    Steur RJ, Perez RS, De Lange JJ (2004) Dosage scheme for propofol in children under 3 years of age. Paediatr Anaesth 14:462–467PubMedCrossRefGoogle Scholar
  15. 15.
    Kornecki A, Frndova H, Coates AL, Shemie SD (2001) A randomized trial of prolonged prone positioning in children with acute respiratory failure. Chest 119:211–218PubMedCrossRefGoogle Scholar
  16. 16.
    Smith RH (1974) One solution to the problem ot the prone position for surgical procedures. Anesth Analg 53:211–224Google Scholar
  17. 17.
    Lumb AB, Nunn JF (1991) Respiratory function and ribcage contribution to ventilation in body positions commonly used during anaesthesia. Anesth Analg 73:422–426PubMedCrossRefGoogle Scholar
  18. 18.
    Schibler A, Hammer J, Isler R, Buess C, Newth CJ (2004) Measurement of lung volume in mechanically ventilated monkeys with an ultrasonic flow meter and the nitrogen washout method. Intensive Care Med 30:127–132PubMedCrossRefGoogle Scholar
  19. 19.
    East TD, Andriano KP, Pace NL (1987) Automated measurement of functional residual capacity by sulfur hexafluoride washout. J Clin Monit 3:14–21PubMedGoogle Scholar
  20. 20.
    Schibler A, Hall GL, Businger F, Reinmann B, Wildhaber JH, Cernelc M, Frey U (2002) Measurement of lung volume and ventilation distribution with an ultrasonic flow meter in healthy infants. Eur Respir J 20:912–918PubMedCrossRefGoogle Scholar
  21. 21.
    Larsson A, Linnarsson D, Jonmarker C, Jonson B, Larsson H, Werner O (1987) Measurement of lung volume by sulfur hexafluoride washout during spontaneous and controlled ventilation: further development of a method. Anesthesiology 67:543–550PubMedCrossRefGoogle Scholar
  22. 22.
    Gustafsson PM, Kallman S, Ljungberg H, Lindblad A (2003) Method for assessment of volume of trapped gas in infants during multiple-breath inert gas washout. Pediatr Pulmonol 35:42–49PubMedCrossRefGoogle Scholar
  23. 23.
    Gustafsson PM, Aurora P, Lindblad A (2003) Evaluation of ventilation maldistribution as an early indicator of lung disease in children with cystic fibrosis. Eur Respir J 22:972–979PubMedGoogle Scholar
  24. 24.
    Curley MA (1999) Prone positioning of patients with acute respiratory distress syndrome: a systematic review. Am J Crit Care 8:397–405PubMedGoogle Scholar
  25. 25.
    Larsson A, Jonmarker C, Werner O (1988) Ventilation inhomogeneity during controlled ventilation. Which index should be used? J Appl Physiol 65:2030–2039PubMedGoogle Scholar
  26. 26.
    Treppo S, Mijailovich SM, Venegas JG (1997) Contributions of pulmonary perfusion and ventilation heterogeneity in V/Q measured by PET. J Appl Physiol 82:1163–1176PubMedGoogle Scholar
  27. 27.
    Mure M, Domino KB, Lindahl SG, Hlastala MP, Altemeier WA, Glenny RW (2000) Regional ventilation–perfusion distribution is more uniform in the prone position. J Appl Physiol 88:1076–1083PubMedGoogle Scholar
  28. 28.
    Amis TC, Jones HA, Hughes JM (1984) Effect of posture on inter-regional distribution of pulmonary ventilation in man. Respir Physiol 56:145–167PubMedCrossRefGoogle Scholar
  29. 29.
    Lumb AB (2000) Distribution of pulmonary ventilation and perfusion. In: Nunn's applied respiratory physiology, 5th edn. Butterworth-Heinemann, Oxford, pp 163–199Google Scholar
  30. 30.
    Froese AB, Bryan AC (1974) Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology 41:242–255PubMedCrossRefGoogle Scholar
  31. 31.
    Papastamelos C, Panitch HB, England SE, Allen JL (1995) Developmental changes in chest wall compliance in infancy and early childhood. J Appl Physiol 78:179–184PubMedGoogle Scholar
  32. 32.
    Bancalari E, Clausen J (1998) Pathophysiology of changes in absolute lung volumes. Eur Respir J 12:248–258PubMedCrossRefGoogle Scholar
  33. 33.
    Stocks J (1999) Respiratory physiology during early life. Monaldi Arch Chest Dis 54:358–364PubMedGoogle Scholar
  34. 34.
    von Ungern-Sternberg BS, Hammer J, Schibler A, Frei FJ, Erb TO (2006) Decrease of functional residual capacity and ventilation homogeneity following neuromuscular blockade in anesthetized young infants and preschool children. Anesthesiology 105:670–675CrossRefGoogle Scholar
  35. 35.
    Pelosi P, Tubiolo D, Mascheroni D, Vicardi P, Crotti S, Valenza F, Gattinoni L (1998) Effects of prone position on respiratory mechanics and gas exchange during acute lung injury. Am J Respir Crit Care Med 157:387–393PubMedGoogle Scholar
  36. 36.
    Mutoh T, Guest RJ, Lamm WJE, Albert RK (1992) Prone position alters the effect of volume overload on regional pleural pressures and improves hypoxemia in pigs in vivo. Am J Respir Crit Care Med 146:300–306Google Scholar
  37. 37.
    Habib RH, Lutchen KR (1991) Moment analysis of a multibreath nitrogen washout based on an alveolar gas dilution number. Am Rev Respir Dis 144:513–519PubMedGoogle Scholar
  38. 38.
    Gronkvist M, Bergsten E, Gustafsson PM (2002) Effects of body posture and tidal volume on inter- and intraregional ventilation distribution in healthy men. J Appl Physiol 92:634–642PubMedGoogle Scholar
  39. 39.
    Rigg JR (1981) Pulmonary atelectasis after anaesthesia: pathophysiology and management. Can Anaesth Soc J 28:305–313PubMedCrossRefGoogle Scholar
  40. 40.
    Damgaard-Pedersen K, Qvist T (1980) Pediatric pulmonary CT-scanning. Anaesthesia-induced changes. Pediatr Radiol 9:145–148PubMedCrossRefGoogle Scholar
  41. 41.
    Don HF, Wahba WM, Craig DB (1972) Airway closure, gas trapping, and the functional residual capacity during anesthesia. Anesthesiology 36:533–539PubMedCrossRefGoogle Scholar
  42. 42.
    Duggan M, Kavanagh BP (2005) Pulmonary atelectasis: a pathogenetic perioperative entity. Anesthesiology 102:838–854PubMedCrossRefGoogle Scholar
  43. 43.
    von Ungern-Sternberg BS, Regli A, Frei FJ, Hammer J, Schibler A, Erb TO (2006) The effect of caudal block on functional residual capacity and ventilation homogeneity in healthy children. Anaesthesia 61:758–763CrossRefGoogle Scholar
  44. 44.
    von Ungern-Sternberg BS, Frei FJ, Hammer J, Schibler A, Doerig R, Erb TO (2007) Impact of depth of propofol anaesthesia on the functional residual capacity and ventilation distribution in healthy preschool children. Br J Anaesth 98:503–508CrossRefGoogle Scholar
  45. 45.
    von Ungern-Sternberg BS, Regli A, Schibler A, Hammer J, Frei FJ, Erb TO (2007) Impact of positive end-expiratory pressure on functional residual capacity and ventilation homogeneity impairment in anesthetized children exposed to high levels of inspired oxygen. Anesth Analg 104 (6) (in press)Google Scholar
  46. 46.
    Regli A, Habre W, Saudan S, Mamie C, Erb TO, von Ungern-Sternberg BS (2007) Impact of Trendelenburg positioning on functional residual capacity and ventilation homogeneity in anaesthetised children. Anaesthesia 62:451–455PubMedCrossRefGoogle Scholar
  47. 47.
    von Ungern-Sternberg BS, Saudan S, Regli A, Schaub E, Erb TO, Habre W (2007) Should the use of modified Jackson Rees T-piece breathing system be abandoned in preschool children? Paed Anaesth (in press)Google Scholar
  48. 48.
    Sivan Y, Deakers TW, Newth CJ (1990) Functional residual capacity in ventilated infants and children. Pediatr Res 28:451–454PubMedCrossRefGoogle Scholar
  49. 49.
    von Ungern-Sternberg BS, Frei FJ, Hammer J, Erb TO (2005) Impact of positioning on functional residual capacity and ventilation homogeneity in anaesthetised preschool children. Swiss Med Weekly 135 [Suppl 148]:13Google Scholar
  50. 50.
    von Ungern-Sternberg BS (2006) Impact of depth of propofol vs ketamine sedation on functional residual capacity and ventilation distribution in preschool aged children. Eur J Anaesth 23 [Suppl 37]:176 Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Britta S. von Ungern-Sternberg
    • 1
  • Jürg Hammer
    • 2
  • Franz J. Frei
    • 1
  • Eva-Maria Jordi Ritz
    • 1
  • Andreas Schibler
    • 3
  • Thomas O. Erb
    • 1
  1. 1.Division of AnesthesiaUniversity Children’s HospitalBaselSwitzerland
  2. 2.Division of Pneumology and Intensive CareUniversity Children’s HospitalBaselSwitzerland
  3. 3.Division of Pediatric Intensive CareMater Misericordiae HospitalBrisbaneAustralia

Personalised recommendations