Intensive Care Medicine

, Volume 33, Issue 6, pp 1094–1101

The effect of iNOS deletion on hepatic gluconeogenesis in hyperdynamic murine septic shock

  • Gerd Albuszies
  • Josef Vogt
  • Ulrich Wachter
  • Christoph Thiemermann
  • Xavier M. Leverve
  • Sandra Weber
  • Michael Georgieff
  • Peter Radermacher
  • Eberhard Barth
Experimental

Abstract

Objective

To investigate the role of the inducible nitric oxide synthase activation-induced excess nitric oxide formation on the rate of hepatic glucose production during fully resuscitated murine septic shock.

Design

Prospective, controlled, randomized animal study.

Setting

University animal research laboratory.

Subjects

Male C57Bl/6 and B6.129P2-Nos2tm1Lau/J (iNOS−/−) mice.

Interventions

Fifteen hours after cecal ligation and puncture, anesthetized, mechanically ventilated and instrumented mice (wild-type controls, n = 13; iNOS−/−, n = 12; wild-type mice receiving 5 mg·kg−1 i.p. of the selective iNOS inhibitor GW274150 immediately after cecal ligation and puncture, n = 8) received continuous i.v. hydroxyethylstarch and norepinephrine to achieve normotensive and hyperdynamic hemodynamics.

Measurements and results

Measurements were recorded 18, 21 and 24 h after cecal ligation and puncture. Liver microcirculatory perfusion and capillary hemoglobin O2 saturation (laser Doppler flowmetry and remission spectrophotometry) were well maintained in all groups. Despite significantly lower norepinephrine doses required to achieve the hemodynamic targets, the rate of hepatic glucose production (gas chromatography–mass spectrometry measurements of tissue isotope enrichment during continuous i.v. 1,2,3,4,5,6-13C6-glucose infusion) at 24 h after cecal ligation and puncture was significantly higher in both iNOS−/− and GW274150-treated mice, which was concomitant with a significantly higher hepatic phosphoenolpyruvate carboxykinase activity (spectrophotometry) in these animals.

Conclusions

In normotensive, hyperdynamic septic shock, both pharmacologic and genetic deletion of the inducible nitric oxide synthase allowed maintenance of hepatic glucose production, most likely due to maintained activity of the key regulatory enzyme of gluconeogenesis, phosphoenolpyruvate carboxykinase.

Keywords

Laser Doppler flowmetry Remission spectrophotometry Stable isotope Tracer dilution modeling Phosphoenolpyruvate carboxykinase Glucose-6-phosphatase 

Supplementary material

References

  1. 1.
    L'Her E, Sebert P (2001) A global approach to energy metabolism in an experimental model of sepsis. Am J Respir Crit Care Med 164:1444–1447PubMedGoogle Scholar
  2. 2.
    Tu W, Satoi S, Zhang Z, Kitade H, Okumura T, Kwon AH, Kamiyama Y (2003) Hepatocellular dysfunction induced by nitric oxide production in hepatocytes isolated from rats with sepsis. Shock 19:373–377PubMedCrossRefGoogle Scholar
  3. 3.
    Brealey D, Karyampudi S, Jacques TS, Novelli M, Stidwill R, Taylor V, Smolenski RT, Singer M (2004) Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am J Physiol Regul Integr Comp Physiol 286:R491–R497PubMedGoogle Scholar
  4. 4.
    Porta F, Takala J, Weikert C, Bracht H, Kolarova A, Lauterburg BH, Borotto E, Jakob SM (2006) Effects of prolonged endotoxemia on liver, skeletal muscle and kidney mitochondrial function. Crit Care 10:R118PubMedCrossRefGoogle Scholar
  5. 5.
    King CJ, Tytgat S, Delude RL, Fink MP (1999) Ileal mucosal oxygen consumption is decreased in endotoxemic rats but is restored toward normal by treatment with aminoguanidine. Crit Care Med 27:2518–2524PubMedCrossRefGoogle Scholar
  6. 6.
    Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223PubMedCrossRefGoogle Scholar
  7. 7.
    Boulos M, Astiz ME, Barua RS, Osman M (2003) Impaired mitochondrial function induced by serum from septic shock patients is attenuated by inhibition of nitric oxide synthase and poly(ADP-ribose) synthase. Crit Care Med 31:353–358PubMedCrossRefGoogle Scholar
  8. 8.
    Albuszies G, Radermacher P, Vogt J, Wachter U, Weber S, Schoaff M, Georgieff M, Barth E (2005) Effect of increased cardiac output on hepatic and intestinal microcirculatory blood flow, oxygenation, and metabolism in hyperdynamic murine septic shock. Crit Care Med 33:2332–2338PubMedCrossRefGoogle Scholar
  9. 9.
    Horton RA, Ceppi ED, Knowles RG, Titheradge MA (1994) Inhibition of hepatic gluconeogenesis by nitric oxide: a comparison with endotoxic shock. Biochem J 299:735–739PubMedGoogle Scholar
  10. 10.
    Stadler J, Barton D, Beil-Moeller H, Diekmann S, Hierholzer C, Erhard W, Heidecke CD (1995) Hepatocyte nitric oxide biosynthesis inhibits glucose output and competes with urea synthesis for L-arginine. Am J Physiol 268:G183–G188PubMedGoogle Scholar
  11. 11.
    Sprangers F, Sauerwein HP, Romijn JA, van Woerkom GM, Meijer AJ (1998) Nitric oxide inhibits glycogen synthesis in isolated rat hepatocytes. Biochem J 330:1045–1049PubMedGoogle Scholar
  12. 12.
    Andrejko KM, Deutschman CS (1997) Altered hepatic gene expression in fecal peritonitis: changes in transcription of gluconeogenic, beta-oxidative, and ureagenic genes. Shock 7:164–169PubMedCrossRefGoogle Scholar
  13. 13.
    Deutschman CS, Andrejko KM, Haber BA, Bellin L, Elenko E, Harrison R, Taub R (1997) Sepsis-induced depression of rat glucose-6-phosphatase gene expression and activity. Am J Physiol 273:R1709–R1718PubMedGoogle Scholar
  14. 14.
    Ceppi ED, Smith FS, Titheradge MA (1996) Effect of multiple cytokines plus bacterial endotoxin on glucose and nitric oxide production by cultured hepatocytes. Biochem J 317:503–507PubMedGoogle Scholar
  15. 15.
    Ou J, Molina L, Kim YM, Billiar TR (1996) Excessive NO production dose not account for the inhibition of hepatic gluconeogenesis in endotoxemia. Am J Physiol 271:G621–G628PubMedGoogle Scholar
  16. 16.
    Villa P, Demitri MT, Meazza C, Sironi M, Gnocchi P, Ghezzi P (1996) Effects of methyl palmitate on cytokine release, liver injury and survival in mice with sepsis. Eur Cytokine Netw 7:765–769PubMedGoogle Scholar
  17. 17.
    Träger K, Radermacher P, Rieger KM, Vlatten A, Vogt J, Iber T, Adler J, Wachter U, Grover R, Georgieff M, Šantak B (1999) Norepinephrine and Nω-monomethyl-L-arginine in porcine septic shock: effects on hepatic O2 exchange and energy balance. Am J Respir Crit Care Med 159:1758–1765PubMedGoogle Scholar
  18. 18.
    Matejovic M, Radermacher P, Tugtekin I, Stehr A, Theisen M, Vogt J, Wachter U, Ploner F, Georgieff M, Träger K (2001) Effects of selective iNOS inhibition on gut and liver O2-exchange and energy metabolism during hyperdynamic porcine endotoxemia. Shock 16:203–210PubMedCrossRefGoogle Scholar
  19. 19.
    Moeniralam HS, Sprangers F, Endert E, Ackermans MT, Van Lanschot JJ, Sauerwein HP, Romijn JA (2001) Role of nitric oxide in the regulation of glucose kinetics in response to endotoxin in dogs. J Appl Physiol 91:130–136PubMedGoogle Scholar
  20. 20.
    Strunk V, Hahnenkamp K, Schneuing M, Fischer LG, Rich GF (2001) Selective iNOS inhibition prevents hypotension in septic rats while preserving endothelium-dependent vasodilation. Anesth Analg 92:681–687PubMedCrossRefGoogle Scholar
  21. 21.
    Barth E, Radermacher P, Thiemermann C, Weber S, Georgieff M, Albuszies G (2006) Role of inducible nitric oxide synthase in the reduced responsiveness of the myocardium to catecholamines in a hyperdynamic, murine model of septic shock. Crit Care Med 34:307–313PubMedCrossRefGoogle Scholar
  22. 22.
    Alderton WK, Angell ADR, Craig C, Dawson J, Garvey EP, Moncada S, Monkhouse J, Rees D, Russell LJ, Schwartz S, Waslidge N, Knowles RG (2005) GW274150 and GW273629 are potent and highly selective inhibitors of inducible nitric oxide (iNOS) in vitro and in vivo. Br J Pharmacol 145:310–312CrossRefGoogle Scholar
  23. 23.
    Cobelli C, Toffolo G, Ferrannini E (1984) A model of glucose kinetics and their control by insulin, compartmental and noncompartmental approaches. Math Biosci 72:291–316CrossRefGoogle Scholar
  24. 24.
    Bier DM, Leake RD, Haymond MW, Arnold KJ, Gruenke LD, Sperling MA, Kipnis DM (1977) Measurement of “true” glucose production rates in infancy and childhood with 6,6-dideuteroglucose. Diabetes 26:1016–1023PubMedCrossRefGoogle Scholar
  25. 25.
    Goswami C, Datta S, Biswas K, Saha N (2004) Cell volume changes affect gluconeogenesis in the perfused liver of the catfish Clarias batrachus. J Biosci 29:337–347PubMedGoogle Scholar
  26. 26.
    Hansen RJ, Hinze H, Holzer H (1976) Assay of phosphoenolpyruvate carboxykinase in crude yeast extracts. Anal Biochem 74:576–584PubMedCrossRefGoogle Scholar
  27. 27.
    Nüssler AK, Brückner UB, Vogt J, Radermacher P (2002) Measuring end products of nitric oxide in vivo. Methods Enzymol 359:75–83PubMedCrossRefGoogle Scholar
  28. 28.
    Connolly CC, Steiner KE, Stevenson RW, Neal DW, Williams PE, Alberti KG, Cherrington AD (1991) Regulation of glucose metabolism by norepinephrine in conscious dogs. Am J Physiol 261:E764–E772PubMedGoogle Scholar
  29. 29.
    Chu CA, Galassetti P, Igawa K, Sindelar DK, Neal DW, Burish M, Cherrington AD (2003) Interaction of free fatty acids and epinephrine in regulating hepatic glucose production in conscious dogs. Am J Physiol Endocrinol Metab 284:E291–E301PubMedGoogle Scholar
  30. 30.
    Bearn AG, Billing B, Sherlock S (1951) The effect of adrenaline and noradrenaline on hepatic blood flow and splanchnic carbohydrate metabolism in man. J Physiol 115:430–441PubMedGoogle Scholar
  31. 31.
    Ensinger H, Geisser W, Brinkmann A, Wachter U, Vogt J, Radermacher P, Georgieff M, Träger K (2002) Metabolic effects of norepinephrine and dobutamine in healthy volunteers. Shock 18:495–500PubMedCrossRefGoogle Scholar
  32. 32.
    Wang P, Tait SM, Chaudry IH (2000) Sustained elevation of norepinephrine depresses hepatocellular function. Biochim Biophys Acta 1535:36–44PubMedGoogle Scholar
  33. 33.
    Yang S, Koo DJ, Zhou M, Chaudry IH, Wang P (2000) Gut-derived norepinephrine plays a critical role in producing hepatocellular dysfunction during early sepsis. Am J Physiol Gastrointest Liver Physiol 279:G1274–G1281PubMedGoogle Scholar
  34. 34.
    Yang S, Zhou M, Chaudry IH, Wang P (2001) Norepinephrine-induced hepatocellular dysfunction in early sepsis is mediated by activation of alpha2-adrenoceptors. Am J Physiol Gastrointest Liver Physiol 281:G1014–G1021PubMedGoogle Scholar
  35. 35.
    Gumucio JJ (1989) Hepatocyte heterogeneity: the coming of age from the description of a biological curiosity to a partial understanding of its physiological meaning and regulation. Hepatology 9:154–160PubMedCrossRefGoogle Scholar
  36. 36.
    Dahn MS, Mitchell RA, Lange MP, Smith S, Jacobs LA (1995) Hepatic metabolic response to injury and sepsis. Surgery 117:520–530PubMedCrossRefGoogle Scholar
  37. 37.
    Reinelt H, Radermacher P, Kiefer P, Fischer G, Wachter U, Vogt J, Georgieff M (1999) Impact of exogenous beta-adrenergic receptor stimulation on hepatosplanchnic oxygen kinetics and metabolic activity in septic shock. Crit Care Med 27:325–331PubMedCrossRefGoogle Scholar
  38. 38.
    Wilmore DW (1977) Impaired gluconeogenesis in extensively injured patients with gram-negative bacteremia. Am J Clin Nutr 30:1355–1356PubMedGoogle Scholar
  39. 39.
    Wilmore DW, Goodwin CW, Aulick LH, Powanda MC, Mason AD Jr, Pruitt BA Jr (1980) Effect of injury and infection on visceral metabolism and circulation. Ann Surg 192:491–504PubMedCrossRefGoogle Scholar
  40. 40.
    Maitra SR, Homan CS, Beuhler MC, Thode HC Jr, Henry M (1999) Alterations in hepatic gluconeogenesis, prostanoid, and intracellular calcium during sepsis. Acad Emerg Med 6:588–595PubMedGoogle Scholar
  41. 41.
    Matejovic M, Krouzecky A, Martinkova V, Rokyta R, Kralova H, Treska V, Radermacher P, Novak I (2004) Selective inducible nitric oxide synthase inhibition during long-term hyperdynamic porcine bacteremia. Shock 21:458–465PubMedCrossRefGoogle Scholar
  42. 42.
    Siegemund M, van Bommel J, Schwarte LA, Studer W, Girard T, Marsch S, Radermacher P, Ince C (2005) Inducible nitric oxide synthase inhibition improves intestinal microcirculatory oxygenation and CO2 balance during endotoxemia in pigs. Intensive Care Med 31:985–992PubMedCrossRefGoogle Scholar
  43. 43.
    Pullamsetti SS, Maring D, Ghofrani HA, Mayer K, Weissmann N, Rosengarten B, Lehner M, Schudt C, Boer R, Grimminger F, Seeger W, Schermuly RT (2006) Effect of nitric oxide synthase (NOS) inhibition on macro- and microcirculation in a model of rat endotoxic shock. Thromb Haemost 95:720–727PubMedGoogle Scholar
  44. 44.
    Ince C, Sinaasappel M (1999) Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 27:1369–1377PubMedCrossRefGoogle Scholar
  45. 45.
    Ceppi ED, Titheradge MA (1998) The importance of nitric oxide in the cytokine-induced inhibition of glucose formation by cultured hepatocytes incubated with insulin, dexamethasone, and glucagon. Arch Biochem Biophys 349:167–174PubMedCrossRefGoogle Scholar
  46. 46.
    Rognstad R (1979) Rate-limiting steps in metabolic pathways. J Biol Chem 254:1875–1878PubMedGoogle Scholar
  47. 47.
    Ochs RS, Lardy HA (1983) Catecholamine stimulation of hepatic gluconeogenesis at the site between pyruvate and phosphoenolpyruvate. J Biol Chem 258:9956–9962PubMedGoogle Scholar
  48. 48.
    Horton RA, Knowles RG, Titheradge MA (1994) Endotoxin causes reciprocal changes in hepatic nitric oxide synthesis, gluconeogenesis, and flux through phosphoenolpyruvate carboxykinase. Biochem Biophys Res Commun 204:659–665PubMedCrossRefGoogle Scholar
  49. 49.
    Pilkis SJ, Granner DK (1992) Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Physiol 54:885–909PubMedCrossRefGoogle Scholar
  50. 50.
    Pison CM, Chauvin C, Fontaine E, Catelloni F, Keriel C, Paramelle B, Leverve XM (1995) Mechanism of gluconeogenesis inhibition in rat hepatocytes isolated after in vivo hypoxia. Am J Physiol 268:E965–E973PubMedGoogle Scholar
  51. 51.
    Deutschman CS, De Maio A, Buchman TG, Clemens MG (1993) Sepsis-induced alterations in phosphoenolpyruvate carboxykinase expression: the role of insulin and glucagon. Circ Shock 40:295–302PubMedGoogle Scholar
  52. 52.
    Chang CK, Moskal SF, Srivenugopal KS, Schumer W (1993) Altered levels of mRNA encoding enzymes of hepatic glucose metabolism in septic rats. Circ Shock 41:35–39PubMedGoogle Scholar
  53. 53.
    Yamauchi K, Nakajima K, Ikeo S, Nishimura Y, Komatsu M, Aizawa T, Hashizume K (2001) Effects of nipradilol, a nitric oxide-releasing beta-adrenoceptor blocking agent, on phosphoenolpyruvate carboxykinase gene transcription in a rat hepatoma cell line. Jpn J Pharmacol 87:83–85PubMedCrossRefGoogle Scholar
  54. 54.
    Hellerstein MK (2004) New stable isotope-mass spectrometric techniques for measuring fluxes through intact metabolic pathways in mammalian systems: introduction of moving pictures into functional genomics and biochemical phenotyping. Metab Eng 6:85–100PubMedCrossRefGoogle Scholar
  55. 55.
    van Dijk TH, Boer TS, Havinga R, Stellaard F, Kuipers F, Reijngoud DJ (2003) Quantification of hepatic carbohydrate metabolism in conscious mice using serial blood and urine spots. Anal Biochem 322:1–13PubMedCrossRefGoogle Scholar
  56. 56.
    Katz J, Wals P, Lee WN (1993) Isotopomer studies of gluconeogenesis and the Krebs cycle with 13C-labeled lactate. J Biol Chem 268:25509–25521PubMedGoogle Scholar
  57. 57.
    Katz J, Lee WN, Wals PA, Bergner EA (1989) Studies of glycogen synthesis and the Krebs cycle by mass isotopomer analysis with [U-13C]glucose in rats. J Biol Chem 264:12994–13004PubMedGoogle Scholar
  58. 58.
    Van den Berghe G (2004) How does blood glucose control with insulin save lives in intensive care? J Clin Invest 114:1187–1195CrossRefGoogle Scholar
  59. 59.
    Chauhan SD, Seggara G, Vo PA, MacAllister RJ, Hobbs AJ, Ahluwalia A (2003) Protection against lipolysaccharide-induced endothelial dysfunction in resistance and conduit vasculature of iNOS knockout mice. FASEB J 17:773–775PubMedGoogle Scholar
  60. 60.
    Connelly L, Madhani M, Hobbs AJ (2005) Resistance to endotoxic shock in endothelial nitric-oxide synthase (eNOS) knockout mice. J Biol Chem 280:10040–10046PubMedCrossRefGoogle Scholar
  61. 61.
    Liaudet L, Mabley JG, Soriano FG, Pacher P, Marton A, Haskó G, Szabó C (2001) Inosine reduces systemic inflammation and improves survivla in septic shock induced by cecal ligation and puncture. Am J Respir Crit Care Med 164:1213–1220PubMedGoogle Scholar
  62. 62.
    Soriano FG, Liaudet L, Szabó E, Virág L, Mabley JG, Pacher P, Szabó C (2002) Resistance to acute septic peritonitis in poly(ADp-ribose) polymerase-1 deficient mice. Shock 17:286–292PubMedCrossRefGoogle Scholar
  63. 63.
    Wu F, Wilson JX, Tyml K (2003) Ascorbate inhibits iNOS expression and preserves vasoconstrictor responsiveness in skeletal muscle of septic mice. Am J Physiol Regul Integrative Comp Physiol 285:50–56Google Scholar
  64. 64.
    Alves-Filho JC, de Freitas A, Russo M, Cunha F (2006) Toll-like receptor 4 signaling leads to neutrophil migration impairment in polymicrobial sepsis. Crit Care Med 34:461–470PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Gerd Albuszies
    • 1
  • Josef Vogt
    • 1
  • Ulrich Wachter
    • 1
  • Christoph Thiemermann
    • 2
  • Xavier M. Leverve
    • 3
  • Sandra Weber
    • 1
  • Michael Georgieff
    • 1
  • Peter Radermacher
    • 1
  • Eberhard Barth
    • 1
  1. 1.Sektion Anästhesiologische Pathophysiologie und VerfahrensentwicklungUniversitätsklinikumUlmGermany
  2. 2.Department of Experimental Medicine and NephrologyThe William Harvey Research InstituteLondonUK
  3. 3.Laboratoire de Bioénergétique Fondamentale et AppliquéeUniversité Joseph FourierGrenobleFrance

Personalised recommendations