Intensive Care Medicine

, Volume 33, Issue 6, pp 941–950 | Cite as

Sepsis-associated delirium

  • Marion Ebersoldt
  • Tarek Sharshar
  • Djillali Annane
Review

Abstract

Objective

Sepsis-associated delirium is a common and poorly understood neurological complication of sepsis. This review provides an update of the diagnostic criteria and treatment strategies and the current knowledge about the mechanisms involved in sepsis associated brain dysfunction.

Data sources

Articles published between 1981 and 2006 were identified through a Medline search for “encephalopathy” and “sepsis” and by hand searching of articles cited in the identified publications. The immune response to sepsis results in multiorgan failure including brain dysfunction.

Discussion

The potential mechanisms for sepsis-associated delirium include vascular damage, endothelial activation, breakdown of the blood-brain barrier, metabolic disorders, brain inflammation and apoptosis. On the other hand, there is evidence for distinct neuroprotective factors, such as anti-inflammatory mediators and glial cell activity.

Conclusions

The diagnosis of sepsis-associated delirium relies mainly on clinical and electrophysiological criteria, and its treatment is entirely based on general management of sepsis.

Keywords

Sepsis Encephalopathy Inflammation Blood-brain barrier Apoptosis Brain dysfunction 

References

  1. 1.
    Young GB, Bolton CF, Archibald YM, Austin TW, Wells GA (1992) The electroencephalogram in sepsis-associated encephalopathy. J Clin Neurophysiol 9:145–152PubMedCrossRefGoogle Scholar
  2. 2.
    Sprung CL, Peduzzi PN, Shatney CH, Schein RM, Wilson MF, Sheagren JN, Hinshaw LB (1990) Impact of encephalopathy on mortality in the sepsis syndrome. The Veterans Administration Systemic Sepsis Cooperative Study Group. Crit Care Med 18:801–806PubMedCrossRefGoogle Scholar
  3. 3.
    Eidelman LA, Putterman D, Putterman C, Sprung CL (1996) The spectrum of septic encephalopathy. Definitions, etiologies, and mortalities. JAMA 275:470–473PubMedCrossRefGoogle Scholar
  4. 4.
    Zauner C, Gendo A, Kramer L, Kranz A, Grimm G, Madl C (2000) Metabolic encephalopathy in critically ill patients suffering from septic or nonseptic multiple organ failure. Crit Care Med 28:1310–1315PubMedCrossRefGoogle Scholar
  5. 5.
    Zauner C, Gendo A, Kramer L, Funk GC, Bauer E, Schenk P, Ratheiser K, Madl C (2002) Impaired subcortical and cortical sensory evoked potential pathways in septic patients. Crit Care Med 30:1136–1139PubMedCrossRefGoogle Scholar
  6. 6.
    Straver JS, Keunen RW, Stam CJ, Tavy DL, de Ruiter GR, Smith SJ, Thijs LG, Schellens RG, Gielen G (1998) Nonlinear analysis of EEG in septic encephalopathy. Neurol Res 20:100–106PubMedGoogle Scholar
  7. 7.
    Ely EW, Truman B, Shintani A, Thomason JW, Wheeler AP, Gordon S, Francis J, Speroff T, Gautam S, Margolin R, Sessler CN, Dittus RS, Bernard GR (2003) Monitoring sedation status over time in ICU patients: reliability and validity of the Richmond Agitation-Sedation Scale (RASS). JAMA 289:2983–2991PubMedCrossRefGoogle Scholar
  8. 8.
    De Jonghe B, Cook D, Griffith L, Appere-de-Vecchi C, Guyatt G, Theron V, Vagnerre A, Outin H (2003) Adaptation to the Intensive Care Environment (ATICE): development and validation of a new sedation assessment instrument. Crit Care Med 31:2344–2354PubMedCrossRefGoogle Scholar
  9. 9.
    Kress JP, Pohlman AS, O'Connor MF, Hall JB (2000) Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 342:1471–1477PubMedCrossRefGoogle Scholar
  10. 10.
    Schweickert WD, Gehlbach BK, Pohlman AS, Hall JB, Kress JP (2004) Daily interruption of sedative infusions and complications of critical illness in mechanically ventilated patients. Crit Care Med 32:1272–1276PubMedCrossRefGoogle Scholar
  11. 11.
    Nguyen DN, Spapen H, Su F, Schiettecatte J, Shi L, Hachimi-Idrissi S, Huyghens L (2006) Elevated serum levels of S-100beta protein and neuron-specific enolase are associated with brain injury in patients with severe sepsis and septic shock. Crit Care Med 34:1967–1974PubMedCrossRefGoogle Scholar
  12. 12.
    Sharshar T, Carlier RY, Bernard F, Guidoux C, Brouland JP, Nardi O, Lorin de la Grandmaison G, Aboab J, Gray F, Menon DK, Annane D (2007) Brain lesions in septic shock—an MRI study. Intensive Care Med (submitted)Google Scholar
  13. 13.
    Finelli PF, Uphoff DF (2004) Magnetic resonance imaging abnormalities with septic encephalopathy. J Neurol Neurosurg Psychiatry 75:1189–1191PubMedCrossRefGoogle Scholar
  14. 14.
    Sharshar T, Annane D, Lorin de la Grandmaison G, Brouland JP, Hopkinson NS, Francoise G (2004) The neuropathology of septic shock. Brain Pathol 14:21–33PubMedCrossRefGoogle Scholar
  15. 15.
    Chrousos GP (1995) The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 332:1351–1362PubMedCrossRefGoogle Scholar
  16. 16.
    Annane D, Trabold F, Sharshar T, Jarrin I, Blanc AS, Raphael JC, Gajdos P (1999) Inappropriate sympathetic activation at onset of septic shock: a spectral analysis approach. Am J Respir Crit Care Med 160:458–465PubMedGoogle Scholar
  17. 17.
    Roth J, Harre EM, Rummel C, Gerstberger R, Hubschle T (2004) Signaling the brain in systemic inflammation: role of sensory circumventricular organs. Front Biosci 9:290–300PubMedCrossRefGoogle Scholar
  18. 18.
    Maier SF, Goehler LE, Fleshner M, Watkins LR (1998) The role of the vagus nerve in cytokine-to-brain communication. Ann N Y Acad Sci 840:289–300PubMedCrossRefGoogle Scholar
  19. 19.
    Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin, Nature 405:458–462Google Scholar
  20. 20.
    Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al Abed Y, Czura CJ, Tracey KJ (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421:384–388PubMedCrossRefGoogle Scholar
  21. 21.
    Papadopoulos MC, Lamb FJ, Moss RF, Davies DC, Tighe D, Bennett ED (1999) Faecal peritonitis causes oedema and neuronal injury in pig cerebral cortex. Clin Sci (Lond) 96:461–466CrossRefGoogle Scholar
  22. 22.
    Omari KM, Dorovini-Zis K (2003) CD40 expressed by human brain endothelial cells regulates CD4+ T cell adhesion to endothelium. J Neuroimmunol 134:166–178PubMedCrossRefGoogle Scholar
  23. 23.
    Hess DC, Bhutwala T, Sheppard JC, Zhao W, Smith J (1994) ICAM-1 expression on human brain microvascular endothelial cells. Neurosci Lett 168:201–204PubMedCrossRefGoogle Scholar
  24. 24.
    Hess DC, Thompson Y, Sprinkle A, Carroll J, Smith J (1996) E-selectin expression on human brain microvascular endothelial cells. Neurosci Lett 213:37–40PubMedCrossRefGoogle Scholar
  25. 25.
    Mayhan WG (1998) Effect of lipopolysaccharide on the permeability and reactivity of the cerebral microcirculation: role of inducible nitric oxide synthase. Brain Res 792:353–357PubMedCrossRefGoogle Scholar
  26. 26.
    Chakravarty S, Herkenham M (2005) Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J Neurosci 25:1788–1796PubMedCrossRefGoogle Scholar
  27. 27.
    Laflamme N, Rivest S (2001) Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J 15:155–163PubMedCrossRefGoogle Scholar
  28. 28.
    Duport S, Garthwaite J (2005) Pathological consequences of inducible nitric oxide synthase expression in hippocampal slice cultures. Neuroscience 135:1155–1166PubMedCrossRefGoogle Scholar
  29. 29.
    Ikeda-Matsuo Y, Ikegaya Y, Matsuki N, Uematsu S, Akira S, Sasaki Y (2005) Microglia-specific expression of microsomal prostaglandin E2 synthase-1 contributes to lipopolysaccharide-induced prostaglandin E2 production. J Neurochem 94:1546–1558PubMedCrossRefGoogle Scholar
  30. 30.
    Caggiano AO, Kraig RP (1999) Prostaglandin E receptor subtypes in cultured rat microglia and their role in reducing lipopolysaccharide-induced interleukin-1beta production. J Neurochem 72:565–575PubMedCrossRefGoogle Scholar
  31. 31.
    Terborg C, Schummer W, Albrecht M, Reinhart K, Weiller C, Rother J (2001) Dysfunction of vasomotor reactivity in severe sepsis and septic shock. Intensive Care Med 27:1231–1234PubMedCrossRefGoogle Scholar
  32. 32.
    Pollard V, Prough DS, Deyo DJ, Conroy B, Uchida T, Daye A, Traber LD, Traber DL (1997) Cerebral blood flow during experimental endotoxemia in volunteers. Crit Care Med 25:1700–1706PubMedCrossRefGoogle Scholar
  33. 33.
    Yang L, Sameshima H, Ikeda T, Ikenoue T (2004) Lipopolysaccharide administration enhances hypoxic-ischemic brain damage in newborn rats. J Obstet Gynaecol Res 30:142–147PubMedCrossRefGoogle Scholar
  34. 34.
    Chuang YC, Tsai JL, Chang AY, Chan JY, Liou CW, Chan SH (2002) Dysfunction of the mitochondrial respiratory chain in the rostral ventrolateral medulla during experimental endotoxemia in the rat. J Biomed Sci 9:542–548PubMedCrossRefGoogle Scholar
  35. 35.
    Lohrer P, Gloddek J, Nagashima AC, Korali Z, Hopfner U, Pereda MP, Arzt E, Stalla GK, Renner U (2000) Lipopolysaccharide directly stimulates the intrapituitary interleukin-6 production by folliculostellate cells via specific receptors and the p38alpha mitogen-activated protein kinase/nuclear factor-kappaB pathway. Endocrinology 141:4457–4465PubMedCrossRefGoogle Scholar
  36. 36.
    Wang T, Qin L, Liu B, Liu Y, Wilson B, Eling TE, Langenbach R, Taniura S, Hong JS (2004) Role of reactive oxygen species in LPS-induced production of prostaglandin E2 in microglia. J Neurochem 88:939–947PubMedCrossRefGoogle Scholar
  37. 37.
    Li FC, Chan JY, Chan SH, Chang AY (2005) In the rostral ventrolateral medulla, the 70-kDa heat shock protein (HSP70), but not HSP90, confers neuroprotection against fatal endotoxemia via augmentation of nitric-oxide synthase I (NOS I)/protein kinase G signaling pathway and inhibition of NOS II/peroxynitrite cascade. Mol Pharmacol 68:179–192PubMedGoogle Scholar
  38. 38.
    Sharshar T, Gray F, Lorin de la Grandmaison G, Hopkinson NS, Ross E, Dorandeu A, Orlikowski D, Raphael JC, Gajdos P, Annane D (2003) Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet 362:1799–1805PubMedCrossRefGoogle Scholar
  39. 39.
    Magnus T, Chan A, Grauer O, Toyka KV, Gold R (2001) Microglial phagocytosis of apoptotic inflammatory T cells leads to down-regulation of microglial immune activation. J Immunol 167:5004–5010PubMedGoogle Scholar
  40. 40.
    Kadoi Y, Saito S, Kunimoto F, Imai T, Fujita T (1996) Impairment of the brain beta-adrenergic system during experimental endotoxemia. J Surg Res 61:496–502PubMedCrossRefGoogle Scholar
  41. 41.
    Kadoi Y, Saito S (1996) An alteration in the gamma-aminobutyric acid receptor system in experimentally induced septic shock in rats. Crit Care Med 24:298–305PubMedCrossRefGoogle Scholar
  42. 42.
    Pavlov VA, Ochani M, Gallowitsch-Puerta M, Ochani K, Huston JM, Czura CJ, Al Abed Y, Tracey KJ (2006) Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc Natl Acad Sci USA 103:5219–5223PubMedCrossRefGoogle Scholar
  43. 43.
    Vallieres L, Rivest S (1999) Interleukin-6 is a needed proinflammatory cytokine in the prolonged neural activity and transcriptional activation of corticotropin-releasing factor during endotoxemia. Endocrinology 140:3890–3903PubMedCrossRefGoogle Scholar
  44. 44.
    Hellstrom IC, Danik M, Luheshi GN, Williams S (2005) Chronic LPS exposure produces changes in intrinsic membrane properties and a sustained IL-beta-dependent increase in GABAergic inhibition in hippocampal CA1 pyramidal neurons. Hippocampus 15:656–664PubMedCrossRefGoogle Scholar
  45. 45.
    Valles A, Marti O, Harbuz MS, Armario A (2002) A single lipopolysaccharide administration is sufficient to induce a long-term desensitization of the hypothalamic-pituitary-adrenal axis. Neuroscience 112:383–389PubMedCrossRefGoogle Scholar
  46. 46.
    Valles A, Marti O, Armario A (2005) Mapping the areas sensitive to long-term endotoxin tolerance in the rat brain: a c-fos mRNA study. J Neurochem 93:1177–1188PubMedCrossRefGoogle Scholar
  47. 47.
    Hopkins RO, Jackson JC (2006) Long-term neurocognitive function after critical illness. Chest 130:869–878PubMedCrossRefGoogle Scholar
  48. 48.
    Wang H, Wu YB, Du XH (2005) Effect of dexamethasone on nitric oxide synthase and Caspase-3 gene expressions in endotoxemia in neonate rat brain. Biomed Environ Sci 18:181–186PubMedGoogle Scholar
  49. 49.
    Kadoi Y, Goto F (2004) Selective inducible nitric oxide inhibition can restore hemodynamics, but does not improve neurological dysfunction in experimentally-induced septic shock in rats. Anesth Analg 99:212–220PubMedCrossRefGoogle Scholar
  50. 50.
    Lopez A, Lorente JA, Steingrub J, Bakker J, McLuckie A, Willatts S, Brockway M, Anzueto A, Holzapfel L, Breen D, Silverman MS, Takala J, Donaldson J, Arneson C, Grove G, Grossman S, Grover R (2004) Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 32:21–30PubMedCrossRefGoogle Scholar
  51. 51.
    Veszelka S, Urbanyi Z, Pazmany T, Nemeth L, Obal I, Dung NT, Abraham CS, Szabo G, Deli MA (2003) Human serum amyloid P component attenuates the bacterial lipopolysaccharide-induced increase in blood-brain barrier permeability in mice. Neurosci Lett 352:57–60PubMedCrossRefGoogle Scholar
  52. 52.
    Esen F, Erdem T, Aktan D, Orhan M, Kaya M, Eraksoy H, Cakar N, Telci L (2005) Effect of magnesium sulfate administration on blood-brain barrier in a rat model of intraperitoneal sepsis: a randomized controlled experimental study. Crit Care 9:R18–R23PubMedCrossRefGoogle Scholar
  53. 53.
    Davis AE, Campbell SJ, Wilainam P, Anthony DC (2005) Post-conditioning with lipopolysaccharide reduces the inflammatory infiltrate to the injured brain and spinal cord: a potential neuroprotective treatment. Eur J Neurosci 22:2441–2450PubMedCrossRefGoogle Scholar
  54. 54.
    Abd El-Gawad HM, Khalifa AE (2001) Quercetin, coenzyme Q10, and L-canavanine as protective agents against lipid peroxidation and nitric oxide generation in endotoxin-induced shock in rat brain. Pharmacol Res 43:257–263PubMedCrossRefGoogle Scholar
  55. 55.
    Bi XL, Yang JY, Dong YX, Wang JM, Cui YH, Ikeshima T, Zhao YQ, Wu CF (2005) Resveratrol inhibits nitric oxide and TNF-alpha production by lipopolysaccharide-activated microglia. Int Immunopharmacol 5:185–193PubMedCrossRefGoogle Scholar
  56. 56.
    Young GB, Bolton CF, Austin TW, Archibald YM, Gonder J, Wells GA (1990) The encephalopathy associated with septic illness. Clin Invest Med 13:297–304PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Marion Ebersoldt
    • 1
  • Tarek Sharshar
    • 1
  • Djillali Annane
    • 1
  1. 1.Service de Réanimation Médicale, Hôpital Raymond Poincaré (AP-HP)Université de Versailles Saint QuentinGarchesFrance

Personalised recommendations