Intensive Care Medicine

, 33:1533 | Cite as

De-escalation therapy rates are significantly higher by bronchoalveolar lavage than by tracheal aspirate

  • Elpis Giantsou
  • Nikolaos Liratzopoulos
  • Eleni Efraimidou
  • Maria Panopoulou
  • Eleonora Alepopoulou
  • Sofia Kartali-Ktenidou
  • Konstantinos Manolas
Original

Abstract

Objective

To assess outcomes with de-escalation therapy in ventilator-associated pneumonia (VAP).

Design

Prospective observational study.

Setting

Multidisciplinary intensive care unit.

Patients and participants

VAP was diagnosed by positive quantitative cultures of both tracheal aspirate and bronchoalveolar lavage (BAL) and treated appropriately for all significant isolates of tracheal aspirate and BAL in 143 patients who were assigned to de-escalation therapy by BAL or tracheal aspirate.

Interventions

None.

Measurements and results

Antibiotic therapy was de-escalated in 58 patients (40.5%), who had decreased mortality at day 15 (5.1% vs. 31.7%) and day 28 (12% vs. 43.5%) and shorter intensive care unit (17.2 ± 1.2 vs. 22.7 ± 6.3 days) and hospital (23.7 ± 2.8 vs. 29.8 ± 11.1 days) stay (p < 0.05). Of the 81 patients assigned to tracheal aspirate, the 17 (21%) who achieved de-escalation of therapy had reduced 15-day mortality (5.8% vs. 34.3%), reduced 28-day mortality (11.6% vs. 45.3%), and shorter intensive care unit (17.2 ± 1.6 vs. 22.4 ± 6.4 days) and hospital (23.1 ± 4.4 vs. 29.9 ± 11.1 days) stay (p < 0.05). Of the 62 patients assigned to BAL, the 41 (66.1%) who achieved de-escalation of therapy had decreased 15-day mortality (4.8% vs. 23.8%), decreased 28-day mortality (12.1% vs. 38%), and shorter intensive care unit (17.2 ± 1.1 vs. 23.2 ± 6 days) and hospital (23.8 ± 2.4 vs. 29.8 ± 11.4 days) stay (p < 0.05).

Conclusions

For patients with VAP who have had appropriate treatment and shown a favorable clinical response, mortality and duration of stay can be further improved by de-escalation therapy.

Keywords

De-escalation therapy Ventilator-associated pneumonia 

References

  1. 1.
    Chastre J (2005) Conference summary: ventilator associated pneumonia. Respir Care 50:975–983PubMedGoogle Scholar
  2. 2.
    Niedermann MS (2006) The importance of de-escalating antimicrobial therapy in patients with ventilator-associated pneumonia. Semin Respir Crit Care Med 27:45–50CrossRefGoogle Scholar
  3. 3.
    Chastre J (2005) Antibiotic prescribing for ventilator-associated pneumonia: get it right from the beginning but be able to rapidly deescalate. Intensive Care Med 31:1465–1465 DOI 10.1007/s00134–005-2696-z CrossRefGoogle Scholar
  4. 4.
    Ibrahim EH, Ward S, Sherman G, Scaiff R, Fraser VJ, Kollef MH (2001) Experience with a clinical guideline for the treatment of ventilator-associated penumonia. Crit Care Med 29:1109–1115PubMedCrossRefGoogle Scholar
  5. 5.
    Micek ST, Ward S, Fraser VJ, Kollef MH (2004) A randomized controlled trial of an antibiotic discontinuation policy for clinically suspected ventilator-associated pneumonia. Chest 125:1791–1799PubMedCrossRefGoogle Scholar
  6. 6.
    Kollef MH, Morrow LE, Niedermann MS, Leeper KV, Anzueto A, Benz-Scott L, Rodino JF (2006) Clinical characteristics and treatment patterns among patients with ventilator-associated pneumonia. Chest 129(5):1210–1218PubMedCrossRefGoogle Scholar
  7. 7.
    Rello J, Vidaur L, Sandiumenge A, Rodriguez A, Gualis B, Carmen B, Diaz E (2004) De-escalation therapy in ventilator-associated pneumonia. Crit Care Med 32:2183–2190 DOI 10.1097/01.CCM.0000145997.10438 PubMedGoogle Scholar
  8. 8.
    Soo Hoo GW, Wen E, Nguyen TV, Goetz MD (2005) Impact of clinical guidelines in the management of severe hospital acquired pneumonia. Chest 128:2778–2787PubMedCrossRefGoogle Scholar
  9. 9.
    Luyt CE, Chastre J, Fagon JY (2004) Value of the clinical pulmonary infection score for the identification and management of ventilator-associated pneumonia. Intensive Care Med 30:844–852 DOI 10.1007/s00134-003-2125-0 PubMedCrossRefGoogle Scholar
  10. 10.
    Schurink CA, Van Nieuwenhoven CA, Jacobs JA, Rozenberg-Arska M, Joore HC, Buskens E, Hoepelman AI, Bonten MJ (2004) Clinical pulmonary infection score for ventilator-associated pneumonia: accuracy and inter-observer variability. Intensive Care Med 30:217–224PubMedCrossRefGoogle Scholar
  11. 11.
    Chastre J, Wolff M, Fagon JY, Chevret S, Thomas F, Wermert D, Clementi E, Gonzalez J, Jusserand D, Asfar P, Perrin D, Fieux F, Aubas S (2003) Comparison of 8 vs. 15 days of antibiotic therapy for ventilator-associated pneumonia in adults. JAMA 290(19):2588–2598PubMedCrossRefGoogle Scholar
  12. 12.
    American Thoracic Society Documents (2005) Guidelines for the management of adults with hospital–acquired, ventilator-associated and healthcare-associated pneumonia. Am J Respir Crit Care Med 172:388–416Google Scholar
  13. 13.
    Trouillet JL, Chastre J, Vuagnat A, Joly-Guillou ML, Combaux D, Dombret D, Dombret MC, Gibert C (1998) Ventilator-associated pneumonia caused by potentially drug-resistant bacteria. Am J Respir Crit Care Med 1157:531–539Google Scholar
  14. 14.
    Niedermann MS (2006) De-escalation therapy in ventilator-associated pneumonia. Curr Opin Crit Care Med 12:452–457CrossRefGoogle Scholar
  15. 15.
    Lisboa T, Rello J (2006) De-escalation in lower respiratory tract infections. Curr Opin Pulm Med 12:364–368PubMedCrossRefGoogle Scholar
  16. 16.
    Kollef MH, Niedermann MS, Leeper KV (2004) Escalation/de-escalation of initial empiric ventilator-associated pneumonia therapy: interim results from the assessment of local antibiotic resistance measures study. Chest 126:718Google Scholar
  17. 17.
    Le Gall JR, Lemeshow S, Saulnier F (1993) A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 270:2957–2963PubMedCrossRefGoogle Scholar
  18. 18.
    Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, Reinhart CK, Suter PM, Thijs LG (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the working group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 22:707–710PubMedGoogle Scholar
  19. 19.
    Andrews P, Azoulay E, Antonelli M, Brochard L, Brun-Buisson C, Dobb G, Fagon JY, Gerlach H, Groeneveld J, Mancebo J, Metnitz P, Nava S, Pugin J, Pinsky M, Radermacher P, Richard C, Tasker R (2006) Year in review in Intensive Care Medicine, 2005. II. Infection and sepsis, ventilator-associated pneumonia, ethics, haematology and haemostasis, ICU organization and scoring, brain injury. Intensive Care Med 32:380–390 DOI 10.1007/s00134-005-0060-y PubMedCrossRefGoogle Scholar
  20. 20.
    Fagon JY (2006) Diagnosis and treatment of ventilator-associated pneumonia: Fiberoptic bronchoscopy with bronchoalveolar lavage is essential. Semin Respir Crit Care Med 27(1):34–44PubMedCrossRefGoogle Scholar
  21. 21.
    Fagon JY, Chastre J, Wolff M, Gervais C, Parer-Aubas S, Stephan F, Similowski T, Mercat A, Diehl JL, Sollet JP, Tenaillon A (2000) Invasive and noninvasive strategies for management of suspected ventilator-associated pneumonia. Ann Intern Med 132:621–630PubMedGoogle Scholar
  22. 22.
    Denesen PJ, van de Ven AJ, Kessels AG, Ramsay G, Bonten MJ (2001) Resolution of infectious parameters after antimicrobial therapy in patients with ventilator-associated pneumonia. Am J Respir Crit Care Med 163(6):1371–1375Google Scholar
  23. 23.
    Singh N, Rogers P, Atwood CW, Wagener MM, Yu VL (2000) Short course empiric antibiotic therapy for pulmonary infiltrates in the intensive care unit: a proposed solution for indiscriminate antibiotic prescription. Am J Respir Crit Care Med 162:505–511PubMedGoogle Scholar
  24. 24.
    Niedermann MS (2004) Therapy of ventilator-associated pneumonia: what more can we do to use less antibiotics? Crit Care Med 32:2344–2345Google Scholar
  25. 25.
    Giantsou E, Liratzopoulos N, Efraimidou E, Panopoulou M, Alepopoulou E, Kartali-Ktenidou S, Minopoulos G, Zakynthinos S, Manolas KI (2005) Both early-onset and late-onset ventilator-associated pneumonia are mainly caused by potentially multiresistant bacteria. Intensive Care Med 31:1388–1394 DOI 10.1007/s00134-005-2697-y CrossRefGoogle Scholar
  26. 26.
    Ibrahim EH, Ward S, Sherman G, Kollef M (2000) A comparative analysis patients with early vs. late onset nosocomial pneumonia in ICU setting. Chest 117:1434–1442PubMedCrossRefGoogle Scholar
  27. 27.
    Valles J, Marischal D, Cortes P, Coll P, Villagra A, Diaz E, Artigas A, Rello J (2004) Patterns of colonization by Pseudomonas aeruginosa in intubated patients: a 3-year prospective study of 1,607 isolates using pulsed-field gel electrophoresis with implications for prevention of ventilator-associated pneumonia. Intensive Care Med 30:1768–1775PubMedCrossRefGoogle Scholar
  28. 28.
    Isakow W, Kolle MH (2006) Preventing ventilator-associated pneumonia: an evidence-based approach of modifiable risk factors. Semin Respir Crit Care Med 27:5–17PubMedCrossRefGoogle Scholar
  29. 29.
    Prince AS (2002) Biofilms, antimicrobial resistance and airway infection. N Engl J Med 347:847–857CrossRefGoogle Scholar
  30. 30.
    Chastre J, Fagon JY (2002) Ventilator-associated pneumonia. Am J Respir Crit Care Med 165:867–903PubMedGoogle Scholar
  31. 31.
    Hoffken G, Niedermann MS (2002) The importance of a de-escalating strategy for antibiotic treatment of pneumonia in the ICU. Chest 122:2183–2196PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Elpis Giantsou
    • 1
    • 3
  • Nikolaos Liratzopoulos
    • 1
  • Eleni Efraimidou
    • 1
  • Maria Panopoulou
    • 2
  • Eleonora Alepopoulou
    • 2
  • Sofia Kartali-Ktenidou
    • 2
  • Konstantinos Manolas
    • 1
  1. 1.Intensive Care Unit, Department of Surgery, Medical SchoolDemokritus University of ThraceAlexandropolisGreece
  2. 2.Department of Microbiology Medical SchoolDemokritus University of ThraceAlexandropolisGreece
  3. 3.Electras 10AthensGreece

Personalised recommendations