Intensive Care Medicine

, Volume 33, Issue 6, pp 1000–1006 | Cite as

Microalbuminuria is a prognostic predictor in aneurysmal subarachnoid hemorrhage

  • Yoshiaki Terao
  • Masafumi Takada
  • Takahiro Tanabe
  • Yuko Ando
  • Makoto Fukusaki
  • Koji Sumikawa



To determine the prevalence and the prognostic significance of microalbuminuria in patients after aneurysmal subarachnoid hemorrhage (SAH).


Prospective and observational clinical study.


Multidisciplinary intensive care unit.


Fifty-one consecutive patients who underwent aneurysm clipping or endovascular surgery after SAH; 8 patients who underwent surgical clipping for unruptured intracerebral aneurysm served as control.



Measurements and Results

General clinical and neurological data were recorded on admission. Urine was collected preoperatively and daily for up to 7 days postoperatively for measuring the urinary microalbumin/creatinine ratio. The Glasgow Coma Scale (GCS) score was also determined on admission and daily for up to 7 days after operation. Neurological outcome was assessed using the Glasgow Outcome Scale (GOS) at 3 months after stroke.

The prevalence rates of microalbuminuria were 74.5% in SAH and 37.5% in the control. Among the 51 patients, 25 had unfavorable neurological outcome (GOS 1–3). The areas under the receiver operator characteristic curves showed that the highest urinary microalbumin/creatinine ratio and the lowest GCS score during the first 8 days were the significant predictors of unfavorable neurological outcome. The threshold value, sensitivity, specificity, and likelihood ratio for the highest urinary microalbumin/creatinine ratio were 200 mg/g, 60% [95% confidence interval (CI) 41–79], 96% (95% CI 88–100), and 15.6 (95% CI 9.1–26.7), respectively.


This study confirms a high prevalence of microalbuminuria in the SAH patients, and it suggests that the highest urinary microalbumin/creatinine ratio > 200 mg/g during the first 8 days is a significant predictor of unfavorable neurological outcome.


Microalbuminuria Urinary albumin creatinine ratio Subarachnoid hemorrhage Systemic inflammatory response Neurological outcome Glasgow Coma Scale 


  1. 1.
    Nakamura M, Onoda T, Itai K, Ohsawa M, Satou K, Sakai T, Segawa T, Sasaki J, Tonari Y, Hiramori K, Okayama A (2004) Association between serum C-reactive protein levels and microalbuminuria: a population-based cross-sectional study in northern Iwate, Japan. Intern Med 43:919–925PubMedCrossRefGoogle Scholar
  2. 2.
    Slowik A, Turaj W, Iskra T, Strojny J, Szczudlik A (2002) Microalbuminuria in nondiabetic patients with acute ischemic stroke: prevalence, clinical correlates, and prognostic significance. Cerebrovasc Dis 14:15–21PubMedCrossRefGoogle Scholar
  3. 3.
    Thorevska N, Sabahi R, Upadya A, Manthous C, Amoateng-Adjepong Y (2003) Microalbuminuria in critically ill medical patients: prevalence, predictors, and prognostic significance. Crit Care Med 31:1075–1081PubMedCrossRefGoogle Scholar
  4. 4.
    Rosen DS, Macdonald RL (2004) Grading of subarachnoid hemorrhage: modification of the World Federation of Neurosurgical Societies Scale on the basis of data for a large series of patients. Neurosurgery 54:566–576PubMedCrossRefGoogle Scholar
  5. 5.
    Claassen J, Kreiter KT, Kowalski RG, Du EY, Ostapkovich N, Fitzsimmons BFM, Connolly ES, Mayer SA (2004) Effect of acute physiologic derangements on outcome after subarachnoid hemorrhage. Crit Care Med 32:832–838PubMedCrossRefGoogle Scholar
  6. 6.
    Terao Y, Takada M, Fujinaga A, Fukusaki M, Sumikawa K (2005) Microalbuminuria is a prognostic predictor in aneurysmal subarachnoid hemorrhage. Anesthesiology 103:A79Google Scholar
  7. 7.
    De Gaudio AR, Adembri C, Grechi S, Novelli GP (2000) Microalbuminuria as an early index of impairment of glomerular permeability in postoperative septic patients. Intensive Care Med 26:1364–1368PubMedCrossRefGoogle Scholar
  8. 8.
    Mascia L, Fedorko L, terBrugge K, Filippini C, Pizzio M, Ranieri VM, Wallace MC (2003) The accuracy of transcranial Doppler to detect vasospasm in patients with aneurysmal subarachnoid hemorrhage. Intensive Care Med 29:1088–1094PubMedCrossRefGoogle Scholar
  9. 9.
    Hunt WE, Hess RM (1968) Surgical risk as related to time of intervention in the repair of intracranial aneurysms. J Neurosurg 28:14–20PubMedCrossRefGoogle Scholar
  10. 10.
    Fisher CM, Kistler JP, Davis JM (1980) Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery 6:1–9PubMedCrossRefGoogle Scholar
  11. 11.
    Baggish AL, MacGillivray TE, Hoffman W, Newell JB, Lewandrowski KB, Lee-Lewandrowski E, Anwaruddin S, Siebert U, Januzzi JL (2004) Postoperative troponin-T predicts prolonged intensive care unit length of stay following cardiac surgery. Crit Care Med 32:1866–1871PubMedCrossRefGoogle Scholar
  12. 12.
    Gansevoort RT, Verhave JC, Hillege HL, Burgerhof JG, Bakker SJ, de Zeeuw D, de Jong PE; for the PREVEND Study Group (2005) The validity of screening based on spot morning urine samples to detect subjects with microalbuminuria in the general population. Kidney Int Suppl 94:S28–S35PubMedCrossRefGoogle Scholar
  13. 13.
    Teasdale G, Jennett B (1974) Assessment of coma and impaired consciousness. A practical scale. Lancet 2:81–84PubMedCrossRefGoogle Scholar
  14. 14.
    Members of the American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference Committee (1992) American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874CrossRefGoogle Scholar
  15. 15.
    Jennett B, Bond M (1975) Assessment of outcome after severe brain damage. A practical scale. Lancet 1:480–484PubMedCrossRefGoogle Scholar
  16. 16.
    Weiss N, Sanchez-Pena P, Roche S, Beaudeux JL, Colonne C, Coriat P, Puybasset L (2006) Prognosis value of plasma S100B protein levels after subarachnoid aneurysmal hemorrhage. Anesthesiology 104:658–666PubMedCrossRefGoogle Scholar
  17. 17.
    Gruber A, Reinprecht A, Gorzer H, Fridrich P, Czech T, Illievich UM, Richling B (1998) Pulmonary function and radiographic abnormalities related to neurological outcome after aneurysmal subarachnoid hemorrhage. J Neurosurg 88:28–37PubMedCrossRefGoogle Scholar
  18. 18.
    Yoshimoto Y, Tanaka Y, Hoya K (2001) Acute systemic inflammatory response syndrome in subarachnoid hemorrhage. Stroke 32:1989–1993PubMedGoogle Scholar
  19. 19.
    Mogensen CE, Christensen CK (1984) Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med 311:89–93PubMedCrossRefGoogle Scholar
  20. 20.
    Mogensen CE (1984) Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med 310:356–360PubMedCrossRefGoogle Scholar
  21. 21.
    Jager A, Kostense PJ, Ruhe HG, Heine RJ, Nijpels G, Dekker JM, Bouter LM, Stehouwer CDA (1999) Microalbuminuria and peripheral arterial disease are independent predictors of cardiovascular and all-cause mortality, especially among hypertensive subjects: five-year follow-up of the Hoorn study. Arterioscler Thromb Vasc Biol 19:617–624PubMedGoogle Scholar
  22. 22.
    Guerrero-Romero F, Rodriguez-Moran M (1999) Proteinuria is an independent risk factor for ischemic stroke in non-insulin-dependent diabetes mellitus. Stroke 30:1787–1791PubMedGoogle Scholar
  23. 23.
    Wartenberg KE, Schmidt JM, Claassen J, Temes RE, Frontera JA, Ostapkovich N, Parra A, Connolly ES, Mayer SA (2006) Impact of medical complications on outcome after subarachnoid hemorrhage. Crit Care Med 34:617–623PubMedCrossRefGoogle Scholar
  24. 24.
    Claassen J, Carhuapoma JR, Kreiter KT, Du EY, Connolly ES, Mayer SA (2002) Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome. Stroke 33:1225–1232PubMedCrossRefGoogle Scholar
  25. 25.
    Parekh N, Venkatesh B, Cross D, Leditschke A, Atherton J, Miles W, Winning A, Clague A, Rickard C (2000) Cardiac troponin I predicts myocardial dysfunction in aneurysmal subarachnoid hemorrhage. J Am Coll Cardiol 36:1328–1335PubMedCrossRefGoogle Scholar
  26. 26.
    Crago EA, Kerr ME, Kong Y, Baldisseri M, Horowitz M, Yonas H, Kassam A (2004) The impact of cardiac complications on outcome in the SAH population. Acta Neurol Scand 110:248–253PubMedCrossRefGoogle Scholar
  27. 27.
    Molnar Z, Szakmany T, Heigl P (2003) Microalbuminuria does not reflect increased systemic capillary permeability in septic shock. Intensive Care Med 29:391–395PubMedCrossRefGoogle Scholar
  28. 28.
    Dziedzic T, Slowik A, Szczudlik A (2004) Urine albumin excretion in acute ischaemic stroke is related to serum interleukin-6. Clin Chem Lab Med 42:182–185PubMedCrossRefGoogle Scholar
  29. 29.
    Fassbender K, Hodapp B, Rossol S, Bertsch T, Schmeck J, Schutt S, Fritzinger M, Horn P, Vajkoczy P, Kreisel S, Brunner J, Schmiedek P, Hennerici M (2001) Inflammatory cytokines in subarachnoid haemorrhage: association with abnormal blood flow velocities in basal cerebral arteries. J Neurol Neurosurg Psychiatry 70:534–537PubMedCrossRefGoogle Scholar
  30. 30.
    Hoogenberg K, Sluiter WJ, Navis G, Van Haeften TW, Smit AJ, Reitsma WD, Dullaart RPF (1998) Exogenous norepinephrine induces an enhanced microproteinuric response in microalbuminuric insulin-dependent diabetes mellitus. J Am Soc Nephrol 9:643–654PubMedGoogle Scholar
  31. 31.
    Macmillan CSA, Grant IS, Andrews PJD (2002) Pulmonary and cardiac sequelae of subarachnoid haemorrhage: time for active management? Intensive Care Med 28:1012–1023PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Yoshiaki Terao
    • 1
  • Masafumi Takada
    • 1
  • Takahiro Tanabe
    • 1
  • Yuko Ando
    • 1
  • Makoto Fukusaki
    • 1
  • Koji Sumikawa
    • 2
  1. 1.Department of AnesthesiaNagasaki Rosai HospitalSaseboJapan
  2. 2.Division of Anesthesiology, Department of Translational Medical SciencesNagasaki University School of MedicineNagasakiJapan

Personalised recommendations