Intensive Care Medicine

, Volume 33, Issue 5, pp 845–850 | Cite as

The selective poly(ADP)ribose-polymerase 1 inhibitor INO1001 reduces spinal cord injury during porcine aortic cross-clamping-induced ischemia/reperfusion injury

  • Christian Maier
  • Angelika Scheuerle
  • Balázs Hauser
  • Hubert Schelzig
  • Csaba Szabó
  • Peter Radermacher
  • Jochen Kick
Brief Report



It is well-established that poly(ADP)ribose-polymerase (PARP) assumes major importance during ischemic brain damage, and the selective PARP-1 inhibitor PJ34 reduced spinal cord damage in murine aortic occlusion-induced ischemia/reperfusion injury. We investigated the effect of the PARP-1 inhibitor INO1001 on aortic-occlusion-related porcine spinal cord injury.

Design and setting

Prospective, randomized, controlled experimental study in an animal laboratory.

Patients and participants

Ten anesthetized, mechanically ventilated, and instrumented pigs.


Animals underwent 45 min of thoracic aortic cross-clamping after receiving vehicle (n = 5) or intravenous INO1001 (n = 5, total dose 4 mg/kg administered both before clamping and during reperfusion). During reperfusion continuous intravenous norepinephrine was incrementally adjusted to maintain blood pressure at or above 80% of the preclamping level. Plasma INO1001 levels were analyzed by HPLC. After 4 h of reperfusion spinal cord biopsy samples were analyzed for neuronal damage (hematoxyline-eosine and Nissl staining), expression of the cyclin-dependent kinase inhibitor genes p21 and p27 (immunohistochemistry), and apoptosis (terminal deoxynucleotidyl transferase mediated nick end labeling assay).

Measurements and results

Plasma INO1001 levels were 0.8–2.3 and 0.30–0.76 mM before and after clamping, respectively. While 3–5% of the spinal cord neurons were irreversibly damaged in the INO1001 animals, the neuronal cell injury was three times higher in the control group. Neither p21 and p27 expression nor apoptosis showed any intergroup difference.


The selective PARP-1 inhibitor INO1001 markedly reduced aortic occlusion-induced spinal cord injury. Given the close correlation reported in the literature between morphological damage and impaired spinal cord function, INO1001 may improve spinal cord recovery after thoracic aortic cross-clamping.


Poly(ADP)ribose-polymerase 1 Aortic cross-clamping Spinal cord Nissl staining Cyclin dependent kinase inhibitor gene p21, p27 



This study was supported by the Deutsche Forschungsgemeinschaft (DFG Sche 899/2-1). B.H. was the recipient of a Roman Herzog research fellowship of the Alexander von Humboldt Stiftung and the Gemeinnützige Hertie Stiftung. INO1001 was kindly provided by Drs. Garry Southan and Andrew Salzman (Inotek Pharmaceuticals Corp., Beverly, Mass., USA). Special thanks are dedicated to Wolfgang Siegler, Tanja Schulz, and Ingrid Eble for their skillful technical assistance.

Supplementary material

134_2007_585_MOESM1_ESM.doc (66 kb)
Supplementary material, approximately 228 KB.
134_2007_585_MOESM2_ESM.doc (22 kb)
Supplementary material, approximately 228 KB.


  1. 1.
    Chiarugi A (2005) Poly(ADP-ribosyl)ation and stroke. Pharmacol Res 52:15–24CrossRefPubMedGoogle Scholar
  2. 2.
    Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA (1997) Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J Cereb Blood Flow Metab 11:1143–1151CrossRefGoogle Scholar
  3. 3.
    Takahashi K, Pieper AA, Croul SE, Zhang J, Snyder SH, Greenberg JH (1999) Post-treatment with an inhibitor of poly(ADP-ribose)polymerase attenuates cerebral damage in focal ischemia. Brain Res 829:46–54CrossRefPubMedGoogle Scholar
  4. 4.
    Takahashi K, Greenberg JH (1999) The effect of reperfusion on neuroprotection using an inhibitor of poly(ADP-ribose)polymerase. Neuroreport 10:2017–2022CrossRefPubMedGoogle Scholar
  5. 5.
    Koh SH, Park Y, Song CW, Kim JG, Kim K, Kim J, Kim MH, Lee SR, Kim DW, Yu HJ, Chang DI, Hwang SJ, Kim SH (2004) The effect of PARP inhibitor on ischaemic cell death, its related inflammation and survival signals. Eur J Neurosci 20:1461–1472CrossRefPubMedGoogle Scholar
  6. 6.
    Sharma SS, Munusamy S, Thiyagarajan M, Kaul CL (2004) Neuroprotective effect of peroxynitrite decomposition catalyst and poly(adenosine diphosphate-ribose)polymerase inhibitor alone and in combination in rats with focal cerebral ischemia. J Neurosurg 101:669–675CrossRefPubMedGoogle Scholar
  7. 7.
    Casey PJ, Black JH, Szabó C, Frosch M, Albadawi H, Chen M, Cambria RP, Watkins MT (2005) Poly(adenosine diphosphate-ribose)polymerase inhibition modulates spinal cord dysfunction after thoracoabdominal aortic ischemia-reperfusion. J Vasc Surg 41:99–107CrossRefPubMedGoogle Scholar
  8. 8.
    Hauser B, Gröger M, Ehrmann U, Albicini M, Brückner UB, Schelzig H, Venkatesh B, Li H, Szabó C, Speit G, Radermacher P, Kick J (2006) The PARP-1 inhibitor INO-1001 facilitates hemodynamic stabilization without affecting DNA repair in porcine aortic cross-clamping-induced ischemia/reperfusion. Shock 25:633–640CrossRefPubMedGoogle Scholar
  9. 9.
    Kick J, Hauser B, Bracht H, Albicini M, Öter S, Simon F, Ehrmann U, Garrel C, Sträter J, Brückner UB, Leverve XM, Schelzig H, Speit G, Radermacher P, Muth CM (2006) Effects of a cantaloupe melon extract/wheat gliadin biopolymer during aortic cross-clamping. Intensive Care Med (in press)Google Scholar
  10. 10.
    Xiao CY, Chen M, Zsengeller Z, Li H, Kiss L, Kollai M, Szabó C (2005) Poly(ADP-Ribose)polymerase promotes cardiac remodeling, contractile failure, and translocation of apoptosis-inducing factor in a murine experimental model of aortic banding and heart failure. J Pharmacol Exp Ther 312:891–898CrossRefPubMedGoogle Scholar
  11. 11.
    Hauser B, Kick J, Iványi Z, Asfar P, Ehrmann U, Muth CM, Albicini M, Wachter U, Vogt J, Bauer M, Brückner UB, Bracht H (2006) Effects of 15-deoxyΔ 12:14-prostaglandin-J2 during hyperdynamic porcine endotoxemia. Intensive Care Med 32:659–665CrossRefGoogle Scholar
  12. 12.
    Maharajh GS, Pascoe EA, Halliday WC, Grocott HP, Thiessen DB, Girling LG, Cheang MS, Mutch WA (1996) Neurological outcome in a porcine model of descending thoracic aortic surgery. Left atrial-femoral artery bypass versus clamp/repair. Stroke 27:2095–2100CrossRefPubMedGoogle Scholar
  13. 13.
    Schelzig H, Chkhotua AB, Wiegand P, Grosse S, Reis S, Art M, Abendroth D (2003) Effect of ischemia/reperfusion on telomere length and CDKI genes expression in a concordant ex-vivo hemoperfusion model of primate kidneys. Ann Transplant 8:17–21PubMedGoogle Scholar
  14. 14.
    Chkhotua AB, Schelzig H, Wiegand P, Grosse S, Reis S, Art M, Abendroth D (2005) Influence of ischaemia/reperfusion and LFA-1 inhibition on telomere lengths and CDKI genes in ex vivo haemoperfusion of primate kidneys. Transpl Int 17:692–698CrossRefPubMedGoogle Scholar
  15. 15.
    Szabó G, Soos P, Mandera S, Heger U, Flechtenmacher C, Bahrle S, Seres L, Cziraki A, Gries A, Zsengeller Z, Vahl CF, Hagl S, Szabó C (2004) INO-1001 a novel poly(ADP-ribose)polymerase (PARP) inhibitor improves cardiac and pulmonary function after crystalloid cardioplegia and extracorporal circulation. Shock 21:426–432CrossRefPubMedGoogle Scholar
  16. 16.
    Szabó G, Soos P, Mandera S, Heger U, Flechtenmacher C, Seres L, Zsengeller Z, Sack FU, Szabó C, Hagl S (2004) Mesenteric injury after cardiopulmonary bypass: role of poly(adenosine 5'-diphosphate-ribose)polymerase. Crit Care Med 32:2392–2397CrossRefPubMedGoogle Scholar
  17. 17.
    Szabó G, Soos P, Heger U, Flechtenmacher C, Bahrle S, Zsengeller Z, Szabó C, Hagl S (2005) Poly(ADP-ribose)polymerase inhibition attenuates biventricular reperfusion injury after orthotopic heart transplantation. Eur J Cardiothorac Surg 27:226–234CrossRefPubMedGoogle Scholar
  18. 18.
    Khan TA, Ruel M, Bianchi C, Voisine P, Komjáti K, Szabó C, Sellke FW (2003) Poly(ADP-ribose)polymerase inhibition improves postischemic myocardial function after cardioplegia-cardiopulmonary bypass. J Am Coll Surg 197:270–277CrossRefPubMedGoogle Scholar
  19. 19.
    Meylaerts SA, De Haan P, Kalkman CJ, Jaspers J, Vanicky I, Jacobs MJ (2000) Prevention of paraplegia in pigs by selective segmental artery perfusion during aortic cross-clamping. J Vasc Surg 32:160–170CrossRefPubMedGoogle Scholar
  20. 20.
    Lazorthes G, Gouaze A, Zadeh JO, Santini JJ, Lazorthes Y, Burdin P (1971) Arterial vascularization of the spinal cord. J Neurosurg 35:253–262CrossRefPubMedGoogle Scholar
  21. 21.
    Domisse GF (1974) The blood supply of the spinal cord. J Bone Joint Surg Br 56:225–235Google Scholar
  22. 22.
    Wadouh F, Lindemann EM, Arndt C, Hetzer R, Borst HG (1984) The arteria radicularis magna anterior as a decisive factor influencing spinal cord damage during aortic occlusion. J Thorac Cardiovasc Surg 88:1–10PubMedGoogle Scholar
  23. 23.
    Godin DV, Garnett ME (1992) Species-related variations in tissue antioxidant status. I. Differences in antioxidant enzyme profiles. Comp Biochem Physiol B Biochem Mol Biol 103:737–742CrossRefGoogle Scholar
  24. 24.
    Godin DV, Garnett ME (1992) Species-related variations in tissue antioxidant status. II. Differences in susceptibility to oxidative challenge. Comp Biochem Physiol B Biochem Mol Biol 103:743–748CrossRefGoogle Scholar
  25. 25.
    Kato H, Kanellopoulos GK, Matsuo S, Wu YJ, Jaquin MF, Hsu CY, Choi DW, Kouchoukos NT (1997) Protection of rat spinal cord from ischemia with dextorphan and cycloheximide: effects on necrosis and apoptosis. J Thorac Cardiovasc Surg 114:609–618CrossRefPubMedGoogle Scholar
  26. 26.
    Kato H, Kanellopoulos GK, Matsuo S, Wu YJ, Jaquin MF, Hsu CY, Kouchoukos NT, Choi DW (1997) Neuronal apoptosis and necrosis following spinal cord ischemia in the rat. Exp Neurol 148:464–474CrossRefPubMedGoogle Scholar
  27. 27.
    Kanellopoulos GF, Kato H, Wu Y, Dougenis D, Mackey M, Hsu CY, Kouchoukos NT (1997) Neuronal cell death in the ischemic spinal cord: the effect of methylprednisolone. Ann Thorac Surg 64:1279–1286CrossRefPubMedGoogle Scholar
  28. 28.
    Mackey ME, Wu Y, Hu R, DeMaro JA, Jaquin MF, Kanellopoulos GK, Hsu CY, Kouchoukos NT (1997) Cell death suggestive of apoptosis after spinal cord ischemia in rabbits. Stroke 28:2012–2017CrossRefPubMedGoogle Scholar
  29. 29.
    Kiyoshima T, Fukuda S, Mastumoto M, Iida Y, Oka S, Nakakimura K, Skabe T (2003) Lack of evidence for apoptosis as a cause of delayed onset paraplegia after spinal cord ischemia in rabbits. Anesth Analg 96:839–846PubMedGoogle Scholar
  30. 30.
    Lee JC, Hwang IK, Park SK, Yoo KY, Seo K, Kang TC, Oh YS, Won MH (2005) Histochemical and electron microscopic study in motor neuron degeneration following transient spinal cord ischemia at normothermic conditions in rabbits. Anat Histol Embryol 34:252–257CrossRefPubMedGoogle Scholar
  31. 31.
    Papakostas JC, Matsagas MI, Toumpoulis IK, Malamou-Mitsi VD, Pappa LS, Gkrepi C, Anagnostopoulos CE, Kappas AM (2006) Evolution of spinal cord injury in a porcine model of prolonged aortic occlusion. J Surg Res 133:159–166CrossRefPubMedGoogle Scholar
  32. 32.
    van Lookeren Campagne M, Gill R (1998) Increased expression of cyclin G1 and p21WAF1 / CIP1 in neurons following transient forebrain ischemia: comparison with early DNA damage. J Neurosci Res 53:279–296CrossRefPubMedGoogle Scholar
  33. 33.
    Crockett DP, Burshteyn M, Garcia C, Muggironi M, Casaccia-Bonnefil P (2005) Number of oligodendrocyte progenitors recruited to the lesioned spinal cord is modulated by the levels of the cell cycle regulatory protein p27Kip – 1. Glia 49:301–308CrossRefPubMedGoogle Scholar
  34. 34.
    Tanaka H, Yamashita T, Yachi K, Fujiwara T, Yoshikawa H, Tohyama M (2004) Cytoplasmatic p21Cip1 / WAF1 enhances axonal regeneration and functional recovery after spinal cord injury in rats. Neuroscience 127:155–164CrossRefPubMedGoogle Scholar
  35. 35.
    Didenko VV, Wang X, Yang L, Horsnby PJ (1996) Expression of p21WAF1 / CIP1 / SDI1 and p53 in apoptotic cells in the adrenal cortex and induction by ischemia/reperfusion injury. J Clin Invest 97:1723–1731CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Megyesi J, Andrade L, Vieira JM, Safirstein RL, Price PM (2001) Positive effect of the induction of p21WAF1 / CIP1 on the course of ischemic acute renal failure. Kidney Int 60:2164–2172CrossRefPubMedGoogle Scholar
  37. 37.
    Corbucci GG, Perrino C, Donato G, Ricchi A, Lettieri B, Troncone G, Indolfi C, Chiariello M, Avvedimento EV (2004) Transient and reversible deoxyribonucleic acid damage in human left ventricle under controlled ischemia and reperfusion. J Am Coll Cardiol 43:1992–1999CrossRefPubMedGoogle Scholar
  38. 38.
    O'Reilly MA (2001) DNA damage and cell cycle checkpoints in hyperoxic lung injury: braking to facilitate repair. Am J Physiol 281:L291–L305Google Scholar
  39. 39.
    Tomasevic G, Kamme F, Stubberöd P, Wieloch M, Wieloch T (1999) The tumor suppressor p53 and its response gene p21WAF1 / Cip1 are not markers of neuronal death following transient global cerebral ischemia. Neuroscience 90:781–792CrossRefPubMedGoogle Scholar
  40. 40.
    Komjáti K, Mabley JG, Virág L, Southan GJ, Salzman AL, Szabó C (2004) Poly(ADP-ribose)polymerase inhibition protects neurons and the white matter and regulates the translocation of apoptosis-inducing factor in stroke. Int J Mol Med 13:373–382PubMedGoogle Scholar
  41. 41.
    Parsons JL, Dianova II, Allinson SL, Dianov GL (2005) Poly(ADP-ribose)polymerase-1 protects excessive DNA strand breaks from deterioration during repair in human cell extracts. FEBS Lett 272:2012–2021CrossRefGoogle Scholar
  42. 42.
    Toumpoulis IK, Anagnostopoulos CE, Drossos GE, Malamou-Mitsi VD, Pappa LS, Kattritsis DG (2003) Early ischemic preconditioning without hypotension prevents spinal cord injury caused by descending thoracic aortic occlusion. J Thorac Cardiovasc Surg 125:1030–1036CrossRefPubMedGoogle Scholar
  43. 43.
    Toumpoulis IK, Anagnostopoulos CE, Drossos GE, Malamou-Mitsi VD, Pappa LS, Katritsis DG (2003) Does ischemic preconditioning reduce spinal cord injury because of descending thoracic aortic occlusion? J Vasc Surg 37:426–432CrossRefPubMedGoogle Scholar
  44. 44.
    Toumpoulis IK, Papakostas JC, Matsagas MI, Malamou-Mitsi VD, Pappa LS, Drossos GE, Derose JJ, Angnostopoulos CE (2004) Superiority of early relative to late ischemic preconditioning in spinal cord protection after descending aortic occlusion. J Thorac Cardiovasc Surg 128:724–730CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Christian Maier
    • 1
    • 2
  • Angelika Scheuerle
    • 3
  • Balázs Hauser
    • 1
    • 4
  • Hubert Schelzig
    • 2
  • Csaba Szabó
    • 5
  • Peter Radermacher
    • 1
  • Jochen Kick
    • 2
  1. 1.Sektion Anästhesiologische Pathophysiologie und VerfahrensentwicklungUniversitätsklinikumUlmGermany
  2. 2.Abteilung Thorax- und GefäßchirurgieUniversitätsklinikumUlmGermany
  3. 3.Sektion NeuropathologieUniversitätsklinikumUlmGermany
  4. 4.Aneszteziológiai és Intenzív Terápiás KlinikaSemmelweis EgyetemBudapestHungary
  5. 5.Department of SurgeryUniversity of Medicine and DentistryNewarkUSA

Personalised recommendations