Intensive Care Medicine

, Volume 33, Issue 6, pp 970–977 | Cite as

Serum lactate as a predictor of mortality in patients with infection

  • Stephen Trzeciak
  • R. Phillip Dellinger
  • Michael E. Chansky
  • Ryan C. Arnold
  • Christa Schorr
  • Barry Milcarek
  • Steven M. Hollenberg
  • Joseph E. Parrillo



To determine the utility of an initial serum lactate measurement for identifying high risk of death in patients with infection.

Design and setting

Post-hoc analysis of a prospectively compiled registry in an urban academic hospital.


Patients with (a) a primary or secondary diagnosis of infection and (b) lactate measurement who were admitted over the 18 months following hospital-wide implementation of the Surviving Sepsis Campaign guideline for lactate measurement in patients with infection and possible severe sepsis. There were 1,177 unique patients, with an in-hospital mortality of 19%.

Measurements and results

Outcome measures included acute-phase (≤ 3 days) death and in-hospital death. We defined lactate ranges a priori (low, 0.0–2.0; intermediate, 2.1–3.9; high, 4.0 mmol/l or above)—and tested for linear associations with mortality by one-way analysis of variance. We determined sensitivity/specificity, odds ratios, and likelihood ratios for a lactate ≥ 4.0 mmol/l and performed a Bayesian analysis to determine its impact on a full range (0.01–0.99) of hypothetical pretest probability estimates for death. In-hospital mortality was 15%, 25%, and 38% in low, intermediate, and high lactate groups, respectively. Acute-phase deaths and in-hospital deaths increased linearly with lactate. An initial lactate ≥ 4.0 mmol/l was associated with sixfold higher odds of acute-phase death; however, a lactate level less than 4 mmol/l had little impact on probability of death.


When broadly implemented in routine practice, measurement of lactate in patients with infection and possible sepsis can affect assessment of mortality risk. Specifically, an initial lactate ≥ 4.0 mmol/l substantiallyincreases the probability of acute-phase death.


Lactic acid Bayesian prediction In-hospital mortality Infection Sepsis Severe sepsis Septic shock 

Supplementary material

134_2007_563_MOESM1_ESM.doc (46 kb)
Electronic Supplementary Material (DOC 46K)


  1. 1.
    Shapiro NI, Howell MD, Talmor D, Nathanson LA, Lisbon A, Wolfe RE, Weiss JW (2005) Serum lactate as a predictor of mortality in emergency department patients with infection. Ann Emerg Med 2 45:524–528CrossRefGoogle Scholar
  2. 2.
    Aduen J, Bernstein WK, Khastgir T, Miller J, Kerzner R, Bhatiani A, Lustgarten J, Bassin AS, Davison L, Chernow B (1994) The use and clinical importance of a substrate-specific electrode for rapid determination of blood lactate concentrations. JAMA 272:1678–1685PubMedCrossRefGoogle Scholar
  3. 3.
    Bakker J (2001) Lactate: may I have your votes please? Intensive Care Med 27:6–11PubMedCrossRefGoogle Scholar
  4. 4.
    Bakker J, Coffernils M, Leon M, Gris P, Vincent JL (1991) Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock. Chest 99:956–962PubMedGoogle Scholar
  5. 5.
    Bakker J, Gris P, Coffernils M, Kahn RJ, Vincent JL (1996) Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg 171:221–226PubMedCrossRefGoogle Scholar
  6. 6.
    Varpula M, Tallgren M, Saukkonen K, Voipio-Pulkki LM, Pettila V (2005) Hemodynamic variables related to outcome in septic shock. Intensive Care Med 31:1066–1071PubMedCrossRefGoogle Scholar
  7. 7.
    Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmermann JL, Vincent JL, Levy MM (2004) Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 32:858–873PubMedCrossRefGoogle Scholar
  8. 8.
    Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmermann JL, Vincent JL, Levy MM (2004) Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Intensive Care Med 30:536–555PubMedCrossRefGoogle Scholar
  9. 9.
    Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M, Early Goal-Directed Therapy Collaborative Group (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377PubMedCrossRefGoogle Scholar
  10. 10.
    Levy MM, Pronovost PJ, Dellinger RP, Townsend S, Resar RK, Claemmer TP, Ramsay G (2004) Sepsis change bundles: converting guidelines into meaningful change in behavior and clinical outcome. Crit Care Med 32:S595–597PubMedCrossRefGoogle Scholar
  11. 11.
    Marcin JP, Pollack MM, Patel KM, Ruttimann UE (2000) Combining physician's subjective and physiology-based objective mortality risk predictions. Crit Care Med 28:2984–2990PubMedCrossRefGoogle Scholar
  12. 12.
    Brannen AL 2nd, Godfrey LJ, Goetter WE (1989) Prediction of outcome from critical illness. A comparison of clinical judgment with a prediction rule. Arch Intern Med 149:1083–1086CrossRefGoogle Scholar
  13. 13.
    Abate NL, Stauss M, Baumann B, Trzeciak S (2004) Using a multidisciplinary acute sepsis initiative to teach early goal-directed therapy for sepsis-induced hypoperfusion states. Ann Emerg Med 44:76SCrossRefGoogle Scholar
  14. 14.
    Dellinger RP on behalf of the Surviving Sepsis Campaign (2004) The Surviving Sepsis Campaign guidelines. Presented at the 33rd Annual Congress of Society of Critical Care Medicine, OrlandoGoogle Scholar
  15. 15.
    Trzeciak S, Dellinger RP, Abate NL, Cowan RM, Stauss M, Kilgannon JH, Zanotti S, Parillo JE (2006) Translating research to clinical practice: a 1-year experience with implementing early goal-directed therapy for septic shock in the emergency department. Chest 129:225–232PubMedCrossRefGoogle Scholar
  16. 16.
    Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310PubMedCrossRefGoogle Scholar
  17. 17.
    Surviving Sepsis Campaign (2005) Implementing the surviving sepsis campaign. Society of Critical Care Medicine, European Society of Intensive Care Medicine, and International Sepsis Forum, Des PlainesGoogle Scholar
  18. 18.
    James JH, Luchette FA, McCarter FD, Fischer JE (1999) Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 354:505–508PubMedCrossRefGoogle Scholar
  19. 19.
    Luchette FA, Jenkins WA, Friend LA, Su C, Fischer JE, James JH (2002) Hypoxia is not the sole cause of lactate production during shock. J Trauma 52:415–419PubMedCrossRefGoogle Scholar
  20. 20.
    Di Giantomasso D, Bellomo R, May CN (2005) The haemodynamic and metabolic effects of epinephrine in experimental hyperdynamic septic shock. Intensive Care Med 31:454–462PubMedCrossRefGoogle Scholar
  21. 21.
    Meregalli A, Oliveira RP, Friedman G (2004) Occult hypoperfusion is associated with increased mortality in hemodynamically stable, high-risk, surgical patients. Crit Care 8:R60–R65PubMedCrossRefGoogle Scholar
  22. 22.
    The SUPPORT Principal Investigators (1995) A controlled trial to improve care for seriously ill hospitalized patients. The study to understand prognoses and preferences for outcomes and risks of treatments (SUPPORT). JAMA 274:1591–1598CrossRefGoogle Scholar
  23. 23.
    Rivers EP (2006) Early goal-directed therapy in severe sepsis and septic shock: converting science to reality. Chest 129:217–218PubMedCrossRefGoogle Scholar
  24. 24.
    Duke TD, Butt W, South M (1997) Predictors of mortality and multiple organ failure in children with sepsis. Intensive Care Med 23:684–692PubMedCrossRefGoogle Scholar
  25. 25.
    Friedman G, Berlot G, Kahn RJ, Vincent JL (1995) Combined measurements of blood lactate concentrations and gastric intramucosal pH in patients with severe sepsis. Crit Care Med 23:1184–1193PubMedCrossRefGoogle Scholar
  26. 26.
    American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Stephen Trzeciak
    • 1
  • R. Phillip Dellinger
    • 1
  • Michael E. Chansky
    • 1
  • Ryan C. Arnold
    • 1
  • Christa Schorr
    • 1
  • Barry Milcarek
    • 1
  • Steven M. Hollenberg
    • 1
  • Joseph E. Parrillo
    • 1
  1. 1.Division of Cardiovascular Disease and Critical Care Medicine and the Department of Emergency MedicineUMDNJ-Robert Wood Johnson Medical School at Camden, Cooper University HospitalCamdenUSA

Personalised recommendations