Intensive Care Medicine

, Volume 33, Issue 4, pp 660–666

Glutamine kinetics during intravenous glutamine supplementation in ICU patients on continuous renal replacement therapy

  • A. Berg
  • Å. Norberg
  • C.-R. Martling
  • L. Gamrin
  • O. Rooyackers
  • J. Wernerman



To investigate glutamine kinetics during continuous renal replacement therapy (CRRT) in multiple organ failure (MOF) patients with and without exogenous intravenous glutamine supplementation.

Design and patients

In a pragmatic clinical study 12 patients without urine production receiving CRRT were prospectively randomized in a cross-over design to receive glutamine intravenously for 20 h before placebo or placebo before glutamine on two consecutive days. Alanyl-glutamine or placebo (saline) was infused.


Plasma glutamine concentration was measured in artery, femoral vein, and filtration fluid. Blood flow across the leg was measured and the efflux of glutamine calculated. The rate of appearance of glutamine was calculated from the plasma decay curve of glutamine concentration on the day of treatment.


Glutamine supplementation increased plasma concentrations from 570 ± 252 to 831 ± 367 μmol l−1. Glutamine losses into the filtration fluids were similar during treatment and control days: 25 ± 13 vs. 24 ± 11 mmol 24 h−1, corresponding to 3.6 ± 1.9 and 3.5 ± 1.6 g 24 h−1, respectively. Net glutamine balance across the leg was also similar on treatment and control days: 150 ± 138 and 188 ± 205 nmol min−1 100 ml−1, respectively. The rate of appearance of glutamine was 54 ± 17 g 24 h−1.


The loss of glutamine into the ultrafiltrate during CRRT in MOF patients suggests a greater need for exogenous glutamine than in patients without renal failure. The leg efflux and the filtration losses of glutamine were not affected in response to intravenous glutamine supplementation.


  1. 1.
    Oudemans van Straaten HM, Bosman RJ, Treskes M, van der Spoel HJ, Zandstra DF (2001) Plasma glutamine depletion and patient outcome in acute ICU admissions. Intensive Care Med 27:84–90PubMedCrossRefGoogle Scholar
  2. 2.
    Wischmeyer PE (2003) Clinical applications of L-glutamine: past, present and future. Nutr Clin Pract 18:377–385PubMedCrossRefGoogle Scholar
  3. 3.
    Novak F, Heyland DK, Avenell A, Drover JW, Su X (2002) Glutamine supplementation in serious illness: a systematic review of the evidence. Crit Care Med 30:2022–2029PubMedCrossRefGoogle Scholar
  4. 4.
    Goeters C, Wenn A, Mertes N, Wempe C, Van Aken H, Stehle P, Bone HG (2002) Parenteral L-alanyl-L-glutamine improves 6-month outcome in critically ill patients. Crit Care Med 30:2032–2037PubMedCrossRefGoogle Scholar
  5. 5.
    Lofberg E, Essen P, McNurlan M, Wernerman J, Garlick P, Anderstam B, Bergstrom J, Alvestrand A (2000) Effect of hemodialysis on protein synthesis. Clin Nephrol 54:284–294PubMedGoogle Scholar
  6. 6.
    Bellomo R, Martin H, Parkin G, Love J, Kearley Y, Boyce N (1991) Continuous arteriovenouos haemodiafiltration in the critically ill: influence on major nutrient balances. Intensive Care Med 17:399–402PubMedCrossRefGoogle Scholar
  7. 7.
    Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, Reinhart CK, Suter PM, Thijs LG (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med 22:707–710PubMedGoogle Scholar
  8. 8.
    Vesali RF, Klaude M, Rooyackers OE, Tjäder I, Barle H, Wernerman J (2002) Longitudinal pattern of glutamine/glutamate balance across the leg in long-stay intensive care unit patients. Clin Nutr 21:505–514PubMedCrossRefGoogle Scholar
  9. 9.
    Rescigno A, Segre G (1966) Drug and tracer kinetics Blaisdell book in the pure and applied sciences. Blaisdell, WalthamGoogle Scholar
  10. 10.
    Gabrielsson J, Weiner D (2000) Pharmacokinetic and pharmacodynamic data analysis: concepts and applications. Swedish Pharmaceutical, StockholmGoogle Scholar
  11. 11.
    Maxvold NJ, Smoyer WE, Custer JR, Bunchman TE (2000) Amino acid loss and nitrogen balance in critically ill children with acute renal failure: a prospective comparison between classic hemofiltration and hemofiltration with dialysis. Crit Care Med 28:1161–1165PubMedCrossRefGoogle Scholar
  12. 12.
    Tjäder I, Rooyackers O, Forsberg AM, Vesali RF, Garlick PJ, Wernerman J (2004) Effects on skeletal muscle of intravenous glutamine supplementation to ICU patients. Intensive Care Med 30:266–275PubMedCrossRefGoogle Scholar
  13. 13.
    Berg A, Bellander B-M, Wanecek M, Gamrin L, Elwing A, Rooyackers O, Ungerstedt U, Wernerman J (2006) Intravenous glutamine supplementation to head trauma patients leaves cerebral glutamate concentration unaffected. Intensive Care Med 32:1741–1746PubMedCrossRefGoogle Scholar
  14. 14.
    Berg A, Rooyackers O, Norberg A, Wernerman J (2005) Elimination kinetics of L-alanyl-L-glutamine in ICU patients. Amino Acids 29:221–228PubMedCrossRefGoogle Scholar
  15. 15.
    van Acker BA, Hulsewe KW, Wagenmakers AJ, von Meyenfeldt MF, Soeters PB (2000) Response of glutamine metabolism to glutamine-supplemented parenteral nutrition. Am J Clin Nutr 72:790–795PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • A. Berg
    • 1
  • Å. Norberg
    • 1
  • C.-R. Martling
    • 1
  • L. Gamrin
    • 1
  • O. Rooyackers
    • 1
  • J. Wernerman
    • 1
  1. 1.Departments of Anesthesia and Intensive CareKarolinska University Hospital Huddinge and Solna, Karolinska InstitutetStockholmSweden

Personalised recommendations