Intensive Care Medicine

, Volume 33, Issue 4, pp 575–590 | Cite as

Hemodynamic monitoring in shock and implications for management

International Consensus Conference, Paris, France, 27–28 April 2006
  • Massimo Antonelli
  • Mitchell Levy
  • Peter J. D. Andrews
  • Jean Chastre
  • Leonard D. Hudson
  • Constantine Manthous
  • G. Umberto Meduri
  • Rui P. Moreno
  • Christian Putensen
  • Thomas Stewart
  • Antoni Torres
International Consensus Conference



Shock is a severe syndrome resulting in multiple organ dysfunction and a high mortality rate. The goal of this consensus statement is to provide recommendations regarding the monitoring and management of the critically ill patient with shock.


An international consensus conference was held in April 2006 to develop recommendations for hemodynamic monitoring and implications for management of patients with shock. Evidence-based recommendations were developed, after conferring with experts and reviewing the pertinent literature, by a jury of 11 persons representing five critical care societies.

Data synthesis

A total of 17 recommendations were developed to provide guidance to intensive care physicians monitoring and caring for the patient with shock. Topics addressed were as follows: (1) What are the epidemiologic and pathophysiologic features of shock in the ICU? (2) Should we monitor preload and fluid responsiveness in shock? (3) How and when should we monitor stroke volume or cardiac output in shock? (4) What markers of the regional and micro-circulation can be monitored, and how can cellular function be assessed in shock? (5) What is the evidence for using hemodynamic monitoring to direct therapy in shock?

One of the most important recommendations was that hypotension is not required to define shock, and as a result, importance is assigned to the presence of inadequate tissue perfusion on physical examination. Given the current evidence, the only bio-marker recommended for diagnosis or staging of shock is blood lactate.

The jury also recommended against the routine use of (1) the pulmonary artery catheter in shock and (2) static preload measurements used alone to predict fluid responsiveness.


This consensus statement provides 17 different recommendations pertaining to the monitoring and caring of patients with shock. There were some important questions that could not be fully addressed using an evidence-based approach, and areas needing further research were identified.


Shock Hemodynamic monitoring ScvO2 Lactate Pulmonary artery catheter Fluid responsiveness 

Supplementary material


  1. 1.
    GRADE working group (2004) Grading quality of evidence and strength of recommendations. BMJ 328:1490–1498CrossRefGoogle Scholar
  2. 2.
    Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med 29:530–538PubMedGoogle Scholar
  3. 3.
    Annane D, Aegerter P, Jars-Guincestre MC, Guidet B (2003) Current epidemiology of septic shock: the CUB-Rea Network. Am J Respir Crit Care Med 168:165–172PubMedCrossRefGoogle Scholar
  4. 4.
    Linde-Zwirble WT, Angus D (2004) Severe sepsis epidemiology: sampling, selection, and society. Crit Care 8:222–226PubMedCrossRefGoogle Scholar
  5. 5.
    Rangel-Frausto MS, Pittet D, Costigan M, Hwang T, Davis CS, Wenzel RP (1995) The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. JAMA 273:117–112PubMedCrossRefGoogle Scholar
  6. 6.
    Brun-Buisson C, Doyon F, Carlet J, Dellamonica P, Gouin F, Lepoutre A, Mercier JC, Offenstadt G, Regnier B (1995) Incidence, risk factors, and outcome of severe sepsis and septic shock in adults. A multicenter prospective study in intensive care units. French ICU Group for Severe Sepsis. JAMA 274:968–974PubMedCrossRefGoogle Scholar
  7. 7.
    Brun-Buisson C, Doyon F, Carlet J (1996) Bacteremia and severe sepsis in adults: a multicenter prospective survey in ICUs and wards of 24 hospitals. French Bacteremia-Sepsis Study Group. Am J Respir Crit Care Med 154:617–624PubMedGoogle Scholar
  8. 8.
    Salvo I, de Cian W, Musicco M, Langer M, Piadena R, Wolfler A, Montani C, Magni E (1995) The Italian SEPSIS study: preliminary results on the incidence and evolution of SIRS, sepsis, severe sepsis and septic shock. Intensive Care Med 21:S244–S249PubMedCrossRefGoogle Scholar
  9. 9.
    Brun-Buisson C, Meshaka P, Pinton P, Vallet B (2004) EPISEPSIS: a reappraisal of the epidemiology and outcome of severe sepsis in French intensive care units. Intensive Care Med 30:580–588PubMedCrossRefGoogle Scholar
  10. 10.
    Alberti C, Brun-Buisson C, Burchardi H, Martin C, Goodman S, Artigas A, Sicignano A, Palazzo M, Moreno R, Boulme R, Lepage E, Le Gall R (2002) Epidemiology of sepsis and infection in ICU patients from an international multicentre cohort study. Intensive Care Med 28:108–121PubMedCrossRefGoogle Scholar
  11. 11.
    van Gestel A, Bakker J, Veraart CP, van Hout BA (2004) Prevalence and incidence of severe sepsis in Dutch intensive care units. Crit Care 8:R153–R162PubMedCrossRefGoogle Scholar
  12. 12.
    Silva E, Pedro MdA, Sogayar AC (2004) Brazilian Sepsis Epidemiological Study (BASES study). Crit Care 8:R251–R260PubMedCrossRefGoogle Scholar
  13. 13.
    Vincent J-L, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, Moreno R, Carlet J, Le Gall JR, Payen D, Sepsis Occurrence in Acutely Ill Patients Investigators (2006). Sepsis in European intensive care units: Results of the SOAP study. Crit Care Med 34:344–353PubMedCrossRefGoogle Scholar
  14. 14.
    Flaatten H (2004) Epidemiology of sepsis in Norway in 1999. Crit Care 8:R180–R184PubMedCrossRefGoogle Scholar
  15. 15.
    Hands ME, Rutherford JD, Muller JE (1989) The in-hospital development of cardiogenic shock after myocardial infarction: incidence, predictors of occurrence, outcome and prognostic factors. The MILIS Study Group. J Am Coll Cardiol 14:40–46PubMedGoogle Scholar
  16. 16.
    Holmes DRJ, Bates ER, Kleiman NS, Sadowski Z, Horgan JH, Morris DC, Califf RM, Berger PB, Topol EJ (1995) Contemporary reperfusion therapy for cardiogenic shock: the GUSTO-I trial experience. The GUSTO-I Investigators. Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries. J Am Coll Cardiol 26:668–674PubMedCrossRefGoogle Scholar
  17. 17.
    Goldberg RJ, Samad NA, Yarzebski J, Gurwitz J, Bigelow C, Gore JM (1999) Temporal trends in cardiogenic shock complicating acute myocardial infarction. N Engl J Med 340:1162–1168PubMedCrossRefGoogle Scholar
  18. 18.
    Goldberg RJ, Gore JM, Thompson CA, Gurwitz JH (2001) Recent magnitude of and temporal trends (1994–1997) in the incidence and hospital death rates of cardiogenic shock complicating acute myocardial infarction: the second national registry of myocardial infarction. Am Heart J 141:65–72PubMedCrossRefGoogle Scholar
  19. 19.
    Babaev A, Frederick PD, Pasta DJ, Every N, Sichrovsky T, Hochman JS; NRMI Investigators (2005) Trends in management and outcomes of patients with acute myocardial infarction complicated by cardiogenic shock. JAMA 294:448–454PubMedCrossRefGoogle Scholar
  20. 20.
    Kohsaka S, Menon V, Lowe AM, Lange M, Dzavik V, Sleeper LA, Hochman JS; SHOCK Investigators (2005) Systemic inflammatory response syndrome after acute myocardial infarction complicated by cardiogenic shock. Arch Intern Med 165:1643–1650PubMedCrossRefGoogle Scholar
  21. 21.
    Yocum MW, Butterfield JH, Klein JS, Volcheck GW, Schroeder DR, Silverstein MD (1999) Epidemiology of anaphylaxis in Olmsted County: A population-based study. J Allergy Clin Immunol 104:271–273CrossRefGoogle Scholar
  22. 22.
    Peng MM, Jick H (2004) A population-based study of the incidence, cause, and severity of anaphylaxis in the United Kingdom. Arch Intern Med 164:317–319. An epidemiologic study of severe anaphylactic and anaphylactoid reactions among hospital patients: methods and overall risks. The International Collaborative Study of Severe Anaphylaxis. Epidemiology 1998;9:141–146PubMedCrossRefGoogle Scholar
  23. 23.
    Schulman AM, Claridge JA, Carr G, Diesen DL, Young JS (2004) Predictors of patients who will develop prolonged occult hypoperfusion following blunt trauma. J Trauma 57:795–800PubMedGoogle Scholar
  24. 24.
    Huang YC (2005) Monitoring oxygen delivery in the critically ill. Chest 128(5 Suppl 2):554S–560SCrossRefGoogle Scholar
  25. 25.
    Leach RM, Treacher DF (2002) The pulmonary physician in critical care 2: oxygen delivery and consumption in the critically ill. Thorax 57:170–177PubMedCrossRefGoogle Scholar
  26. 26.
    Spronk PE, Zandstra DF, Ince C (2004) Bench-to-bedside review: sepsis is a disease of the microcirculation. Crit Care 8:462–468PubMedCrossRefGoogle Scholar
  27. 27.
    Henning RJ, Weil MH, Weiner F (1982) Blood lactate as prognostic indicator of survival in patients with acute myocardial infarction. Circ Shock 9:307–315PubMedGoogle Scholar
  28. 28.
    Hotchkiss RS, Karl IE (1992) Reevaluation of the role of cellular hypoxia and bioenergetic failure in sepsis. JAMA 267:1503–10PubMedCrossRefGoogle Scholar
  29. 29.
    Brealy D, Brand M, Hargreaves I, Heales S, Land J, Smonenski R, Davies NA, Cooper CE, Singer M (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223CrossRefGoogle Scholar
  30. 30.
    Stern SA, Dronen SC, Birrer P, Wang X (1993) Effect of blood pressure on hemorrhage volume and survival in a near-fatal hemorrhage model incorporating a vascular injury. Ann Emerg Med 22:155–163PubMedCrossRefGoogle Scholar
  31. 31.
    Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M, Early Goal-Directed Therapy Collaborative Group (2001). Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377PubMedCrossRefGoogle Scholar
  32. 32.
    Landry DW, Oliver JA (2001) The pathogenesis of vasodilatory shock. N Engl J Med 345:588–595PubMedCrossRefGoogle Scholar
  33. 33.
    VanderMeer TJ, Wang H, Fink MP (1995) Endotoxemia causes ileal mucosal acidosis in the absence of mucosal hypoxia in a normodynamic porcine model of septic shock. Crit Care Med. 23:1217–1226PubMedCrossRefGoogle Scholar
  34. 34.
    Singer M (2005) Metabolic failure. Crit Care Med 33(12 Suppl):S539–42PubMedCrossRefGoogle Scholar
  35. 35.
    Jarrar D, Chaudry IH, Wang P (1999) Organ dysfunction following hemorrhage and sepsis: mechanisms and therapeutic approaches. Int J Mol Med 4:575–583PubMedGoogle Scholar
  36. 36.
    Wu J, Kaufman RJ (2006) From acute ER stress to physiological roles of the Unfolded Protein Response. Cell Death Differ 13:374–384PubMedCrossRefGoogle Scholar
  37. 37.
    Ravagnan L, Roumier T, Kroemer G (2002) Mitochondria, the killer organelles and their weapons. J Cell Physiol 192:131–137PubMedCrossRefGoogle Scholar
  38. 38.
    Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium–apoptosis link. Nat Rev Mol Cell Biol 4:552–565PubMedCrossRefGoogle Scholar
  39. 39.
    Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247PubMedCrossRefGoogle Scholar
  40. 40.
    de Werra I, Jaccard C, Corradin SB, Chiolero R, Yersin B, Gallati H, Assicot M, Bohuon C, Baumgartner JD, Glauser MP, Heumann D (1997) Cytokines, nitrite/nitrate, soluble tumor necrosis factor receptors, and procalcitonin concentrations: comparisons in patients with septic shock, cardiogenic shock, and bacterial pneumonia. Crit Care Med 25:607–613PubMedCrossRefGoogle Scholar
  41. 41.
    Geppert A, Steiner A, Zorn G, Delle-Karth G, Koreny M, Haumer M, Siostrzonek P, Huber K, Heinz G (2002) Multiple organ failure in patients with cardiogenic shock is associated with high plasma levels of interleukin-6. Crit Care Med 30:1987–1994PubMedCrossRefGoogle Scholar
  42. 42.
    Wanner GA, Keel M, Steckholzer U, Beier W, Stocker R, Ertel W (2000) Relationship between procalcitonin plasma levels and severity of injury, sepsis, organ failure, and mortality in injured patients. Crit Care Med 28:950–957PubMedCrossRefGoogle Scholar
  43. 43.
    Spielmann S, Kerner T, Ahlers O, Keh D, Gerlach M, Gerlach H (2001) Early detection of increased tumour necrosis factor alpha (TNFalpha) and soluble TNF receptor protein plasma levels after trauma reveals associations with the clinical course. Acta Anaesthesiol Scand 45:364–370PubMedCrossRefGoogle Scholar
  44. 44.
    Bickell WH, Wall MJ Jr, Pepe PE, Martin RR, Ginger VF, Allen MK, Mattox KL (1994) Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med 331:1105–1109PubMedCrossRefGoogle Scholar
  45. 45.
    G. Halperin JL, Hiratzka LF, Hunt SA, Jacobs AK, Ornato JP (2004) Guidelines for management of patients with ST elevation myocardial infarction: a report of the American College of Cardiology/American HeartAssociation Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of patients with acute myocardial infarction). J Am Coll Cardiol 44:E1–E211CrossRefGoogle Scholar
  46. 46.
    LeDoux D, Astiz ME, Carpati CM, Rackow EC (2000) Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 28:2729–2732PubMedCrossRefGoogle Scholar
  47. 47.
    Bourgoin A, Leone M, Delmas A, Garnier F, Albanese J, Martin C (2005) Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med 33:780–786PubMedCrossRefGoogle Scholar
  48. 48.
    Opie LH (1994) Ventricular function. In: The heart: physiology from cell to circulation. Lippincott-Raven, Philadelphia, pp 343–389Google Scholar
  49. 49.
    Bendjelid K, Romand JA (2003) Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Med 29:352–360PubMedCrossRefGoogle Scholar
  50. 50.
    Perel A (2005) The physiological basis of arterial pressure variation during positive-pressure ventilation. Réanimation 14:162–171CrossRefGoogle Scholar
  51. 51.
    Michard F and Teboul JL (2002) Predicting fluid responsiveness in ICU patients. A critical analysis of the evidence. Chest 121:2000–2008PubMedCrossRefGoogle Scholar
  52. 52.
    Pinsky MR, Payen D (2005) Functional hemodynamic monitoring. Critical Care 9:566–572PubMedCrossRefGoogle Scholar
  53. 53.
    Vincent JL, Weil MH (2006) Fluid challenge revisited. Crit Care Med 34:1333–1337PubMedCrossRefGoogle Scholar
  54. 54.
    Magder S, Lagonidis D (1999) Effectiveness of albumin versus normal saline as a test of volume responsiveness in post-cardiac surgery patients. J Crit Care 14:164–171PubMedCrossRefGoogle Scholar
  55. 55.
    Boulain T, Achard JM, Teboul JL, Richard C, Perrotin D, Ginies G (2002) Changes in blood pressure induced by passive leg raising predict response to fluid loading in critically ill patients. Chest 121:1245–1252PubMedCrossRefGoogle Scholar
  56. 56.
    Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent JL, Levy MM, Surviving Sepsis Campaign Management Guidelines Committee (2004) Surviving sepsis campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 32:858–873PubMedCrossRefGoogle Scholar
  57. 57.
    ARDS Network Fluid and Catheter Treatment Trial (2006) Published at, May 21, (10.1056/NEJMoa062200)
  58. 58.
    Magder S (2006) Central venous pressure monitoring. Curr Opin Crit Care (in press)Google Scholar
  59. 59.
    Magder S, Georgiadis G, Cheong T (1992) Respiratory variations in right atrial pressure predict the response to fluid challenge. J Crit Care 7:76–85CrossRefGoogle Scholar
  60. 60.
    Kumar A, Anel R, Bunnell E, Habet K, Zanotti S, Marshall S, et al (2004) Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 32(3):691–699PubMedCrossRefGoogle Scholar
  61. 61.
    Calvin JE, Driedger AA, Sibbald WJ (1981) The hemodynamic effect of rapid fluid infusion in critically ill patients. Surgery 90:61–76PubMedGoogle Scholar
  62. 62.
    Tousignant CP, Walsh F, Mazer CD (2000) The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg 90:351–355PubMedCrossRefGoogle Scholar
  63. 63.
    Hoeft A, Schorn B, Weyland A, Scholz M, Buhre W, Stepanek E, Allen SJ, Sonntag H (1994) Bedside assessment of intravascular volume status in patients undergoing coronary bypass surgery. Anesthesiology 81:76–86PubMedCrossRefGoogle Scholar
  64. 64.
    Cheung AT, Savino JS, Weiss SJ, Aukburg SJ, Berlin JA (1994) Echocardiographic and hemodynamic indexes of left ventricular preload in patients with normal and abnormal ventricular function. Anaesthesiology 81:376–387CrossRefGoogle Scholar
  65. 65.
    Kumar A, Anel R, Bunnell E, Zanotti S, Habet K, Haery C (2004) Preload-independent mechanisms contribute to increased stroke volume following large volume saline infusion in normal volunteers: a prospective interventional study. Crit Care 8:R128–R136PubMedCrossRefGoogle Scholar
  66. 66.
    Coriat P, Vrillon M, Perel A, Baron JF, Le Bret F, Saada M, Viars P (1994) A comparison of systolic blood pressure variations and echocardiographic estimates of end-diastolic left ventricular size in patients after aortic surgery. Anesth Analg 78:46–53PubMedCrossRefGoogle Scholar
  67. 67.
    Tavernier B, Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89:1313–21PubMedCrossRefGoogle Scholar
  68. 68.
    Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 62:134–138Google Scholar
  69. 69.
    Reuter DA, Goepfert MS, Goresch T, Schmoeckel M, Kilger E, Goetz AE (2005) Assessing fluid responsiveness during open chest conditions. Br J Anaesth 94:318–323PubMedCrossRefGoogle Scholar
  70. 70.
    Preisman S, Kogan S, Berkenstadt H, Perel A (2005) Predicting fluid responsiveness in patients undergoing cardiac surgery: functional hemodynamic parameters including the Respiratory Systolic Variation Test and static preload indicators. Br J Anaesth 95:746–755PubMedCrossRefGoogle Scholar
  71. 71.
    Reuter D, Felbinger TW, Kilger F, Schmidt C, Lamm P, Goetz AE (2002) Optimizing fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left ventricular stroke volume variations: a comparison to aortic systolic pressure variations. Br J Anaesth 88:124–126PubMedCrossRefGoogle Scholar
  72. 72.
    Berkenstadt H, Margalit N, Hadani M, Friedman Z, Segal E, Villa Y, Perel A (2001). Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg 92:984–989PubMedCrossRefGoogle Scholar
  73. 73.
    Reuter DA, Kirchner A, Felbinger TW, Weis FC, Kilger E, Lamm P, Goetz AE (2003) Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function. Crit Care Med 31:1399–404PubMedCrossRefGoogle Scholar
  74. 74.
    Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, Teboul JL (2006). Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med (in press)Google Scholar
  75. 75.
    Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med. 330:1717–1722PubMedCrossRefGoogle Scholar
  76. 76.
    Poeze M, Greve JW, Ramsay G (2005) Meta-analysis of hemodynamic optimization: relationship to methodological quality. Crit Care 9:R771–9PubMedCrossRefGoogle Scholar
  77. 77.
    Shah MR, Hasselblad V, Stevenson LW, Binanay C, O'Connor CM, Sopko G, Califf RM (2005) Impact of the pulmonary artery catheter in critically ill patients. JAMA 294:1664–1669PubMedCrossRefGoogle Scholar
  78. 78.
    Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, Fumagalli R (1995) A trial of goal-directed hemodynamic therapy in critically ill patients. N Engl J Med 333:1025–1032PubMedCrossRefGoogle Scholar
  79. 79.
    Eisenberg PR, Jaffe AS, Schuster DP (1984) Clinical evaluation compared to pulmonary artery catheterization in the hemodynamic assessment of critically ill patients. Crit Care Med 12:549–553PubMedCrossRefGoogle Scholar
  80. 80.
    Bayliss J, Norell M, Ryan A, Thurston M, Sutton GC (1983) Bedside haemodynamic monitoring: experience in a general hospital. Br Med J (Clin Res Ed) 287(6386):187–190Google Scholar
  81. 81.
    Joseph MX, Disney PJ, DaCosta R, Hutchison SJ (2004) Transthoracic echocardiography to identify or exclude cardiac cause of shock. Chest 126:1592–1597PubMedCrossRefGoogle Scholar
  82. 82.
    Sakka SG, Reinhart K, Meier-Hellman A (1999) Comparison of pulmonary artery and arterial thermodilution cardiac output in critically ill patients. Intensive Care Med 25:843–846PubMedCrossRefGoogle Scholar
  83. 83.
    Sakka SG, Reinhart K, Weigsheider K, Meier-Hellman A (2002) Comparison of cardiac output and circulatory blood volumes by transpulmonary thermo-dye dilution and transcutaneous indocyanine green measurement in critically ill patients. Chest. 121:559–65PubMedCrossRefGoogle Scholar
  84. 84.
    Della Rocca J, Costa MG, Coccio C, Pompei L, Pietropaoli P (2002) Preload and haemodynamic assessment during liver transplantation: a comparison between the pulmonary artery catheter and transpulmonary indicator dilution techniques. Eur J Anaesthesiol 19:868–875PubMedCrossRefGoogle Scholar
  85. 85.
    Holm C, Melcer B, Horbrand F (2001) Arterial thermodilution: an alternative to pulmonary artery catheter for cardiac output assessment in burn patients. Burns 27:161–166PubMedCrossRefGoogle Scholar
  86. 86.
    Krenn CG, Krafft P, Shaefer B (2000) Effects of positive end-expiratory pressure on hemodynamics and indocyanine green kinetics in patients after orthotopic liver transplantation. Crit Care Med 28:1760–1765PubMedCrossRefGoogle Scholar
  87. 87.
    Goedje O, Friedl R, Hannekum A (2001) Accuracy of beat-to-beat cardiac output monitoring by pulse contour analysis in hemodynamical unstable patients. Med Sci Monit 7:1344–1350Google Scholar
  88. 88.
    Pittman J, Bar-Yosef S, SumPing J, Sherwood M, Mark J (2005) Continuous cardiac output monitoring with pulse contour analysis: a comparison with lithium indicator dilution cardiac output measurement. Crit Care Med 33:2015–2021PubMedCrossRefGoogle Scholar
  89. 89.
    Sharma J, Bhise M, Singh A, Mehta Y, Trehan N (2005) Hemodynamic measurements after cardiac surgery: transesophageal Doppler versus pulmonary artery catheter. Cardiothorac Vasc Anesth 19:746–750CrossRefGoogle Scholar
  90. 90.
    Su NY, Huang CJ, Tsai P, et al (2002) Cardiac output measurement during cardiac surgery: esophageal Doppler versus pulmonary artery catheter. Acta Anaesthesiol Sin 40:127–133PubMedGoogle Scholar
  91. 91.
    Dark PM, Singer M (2004) The validity of trans-esophageal Doppler ultrasonography as a measure of cardiac output in critically ill adults. Intensive Care Med 30:2060–2066PubMedCrossRefGoogle Scholar
  92. 92.
    Baylor P (2006) Lack of agreement between thermodilution and fick methods in the measurement of cardiac output. J Intensive Care Med 21:93–98PubMedCrossRefGoogle Scholar
  93. 93.
    Weiss S, Calloway E, Cairo J, Grnager W, Winslow J (1995) Comparison of cardiac output measurements by thermodilution and thoracic electrical bioimpedance in critically ill versus non-critically ill patients. Am J Emerg Med 13:626–631PubMedCrossRefGoogle Scholar
  94. 94.
    Claridge JA, Crabtree TD, Pelletier SJ, Butler K, Sawyer RG, Young JS (2000) Persistent occult hypoperfusion is associated with a significant increase in infection rate and mortality in major trauma patients. J Trauma 48:8–14PubMedGoogle Scholar
  95. 95.
    Bakker J, Gris P, Coffernils M, Kahn RJ, Vincent JL (1996) Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg 171:221–226PubMedCrossRefGoogle Scholar
  96. 96.
    Mankis P, Jankowski S, Zhang H (1995). Correlation of serial blood lactate levels to organ failure and mortality after trauma. Am J Emerg Med 13:619–22CrossRefGoogle Scholar
  97. 97.
    Friese RS, Shafi S, Gentilello LM (2006) Pulmonary artery catheter use is associated with reduced mortality in severely injured patients: a national trauma data bank analysis of 53,312 patients. Crit Care Med 34:1597–1601PubMedCrossRefGoogle Scholar
  98. 98.
    Vicaut E, Hou X, Paue D, Bousseau A, Tedgui A (1991) Acute effects of tumor necrosis factor on the microcirculation in rat cremaster muscle. J Clin Invest 87:1537–1540PubMedCrossRefGoogle Scholar
  99. 99.
    Maynard N, Bihari D, Beale R, Smithies M, Baldock G, Mason R, Mc Coll I (1993) Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure. JAMA 270:1203–1210PubMedCrossRefGoogle Scholar
  100. 100.
    Levy B, Gawalkiewicz P, Vallet B, Briancon S, Nace L, Bollaert PE (2003) Gastric capnometry with air-automated tonometry predicts outcome in critically ill patients. Crit Care Med 31:474–480PubMedCrossRefGoogle Scholar
  101. 101.
    Friedman G, Berlot G, Kahn RJ, Vincent JL (1995) Combined measurements of blood lactate concentrations and gastric intramucosal pH in patients with severe sepsis. Crit Care Med 23:1184–1193PubMedCrossRefGoogle Scholar
  102. 102.
    De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104PubMedCrossRefGoogle Scholar
  103. 103.
    Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistant microvasculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831PubMedCrossRefGoogle Scholar
  104. 104.
    Brinkert W, Rommes JH, Bakker J (1999) Lactate measurements in critically ill patients with a hand-held analyser. Intensive Care Med 25(9):966–969PubMedCrossRefGoogle Scholar
  105. 105.
    Boldt J, Kumle B, Suttner S, Haisch G (2001) Point-of-care (POC) testing of lactate in the intensive care patient. Accuracy, reliability, and costs of different measurement systems. Acta Anaesthesiol Scand 45:194–199PubMedCrossRefGoogle Scholar
  106. 106.
    Noordally O, Vincent JL (1999) Evaluation of a new, rapid lactate analyzer in critical care. Intensive Care Med 25:508–513PubMedCrossRefGoogle Scholar
  107. 107.
    Cain SM (1965) Appearance of excess lactate in aneshetized dogs during anemic and hypoxic hypoxia. Am J Physiol 209:604–608PubMedGoogle Scholar
  108. 108.
    Ronco JJ, Fenwick JC, Tweeddale MG, Wiggs BR, Phang PT, Cooper DJ, Cunningham KF, Russell JA, Walley KR (1993) Identification of the critical oxygen delivery for anaerobic metabolism in critically ill septic and nonseptic humans. JAMA 270:1724–1730PubMedCrossRefGoogle Scholar
  109. 109.
    James JH, Luchette FA, McCarter FD, Fischer JE (1999) Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 354:505–508PubMedCrossRefGoogle Scholar
  110. 110.
    Luchette FA, Friend LA, Brown CC, Upputuri RK, James JH (1998) Increased skeletal muscle Na+, K+-ATPase activity as a cause of increased lactate production after hemorrhagic shock. J Trauma 44:796–801PubMedGoogle Scholar
  111. 111.
    Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE (2005) Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 365(9462):871–875PubMedCrossRefGoogle Scholar
  112. 112.
    Revelly JP, Tappy L, Martinez A, Bollmann M, Cayeux MC, Berger MM, Chiolero RL (2005) Lactate and glucose metabolism in severe sepsis and cardiogenic shock. Crit Care Med 33:2235–2240PubMedCrossRefGoogle Scholar
  113. 113.
    Chiolero R, Tappy L, Gillet M, Revelly JP, Roth H, Cayeux C, Schneiter P, Leverve X (1999) Effect of major hepatectomy on glucose and lactate metabolism. Ann Surg 229:505–513PubMedCrossRefGoogle Scholar
  114. 114.
    Murphy ND, Kodakat SK, Wendon JA, Jooste CA, Muiesan P, Rela M, Heaton ND (2001) Liver and intestinal lactate metabolism in patients with acute hepatic failure undergoing liver transplantation. Crit Care Med 29:2111–2118PubMedCrossRefGoogle Scholar
  115. 115.
    Levraut J, Ciebiera JP, Chave S, Rabary O, Jambou P, Carles M, Grimaud D (1998) Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med 157(4, Pt.1):1021–1026PubMedGoogle Scholar
  116. 116.
    Mustafa I, Roth H, Hanafiah A, Hakim T, Anwar M, Siregar E, Leverve XM (2003) Effect of cardiopulmonary bypass on lactate metabolism. Intensive Care Med 29:1279–1285PubMedCrossRefGoogle Scholar
  117. 117.
    Bollmann MD, Revelly JP, Tappy L, Berger MM, Schaller MD, Cayeux MC, Martinez A, Chiolero RL (2004) Effect of bicarbonate and lactate buffer on glucose and lactate metabolism during hemodiafiltration in patients with multiple organ failure. Intensive Care Med 30:1103–1110PubMedCrossRefGoogle Scholar
  118. 118.
    Cole L, Bellomo R, Baldwin I, Hayhoe M, Ronco C (2003) The impact of lactate-buffered high-volume hemofiltration on acid–base balance. Intensive Care Med , 29:1113–1120CrossRefGoogle Scholar
  119. 119.
    Nguyen HB, Rivers EP, Knoblich BP, Jacobsen G, Muzzin A, Ressler JA, Tomlanovich MC (2004) Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med 32:1637–1642PubMedCrossRefGoogle Scholar
  120. 120.
    Smith I, Kumar P, Molloy S, Rhodes A, Newman PJ, Grounds RM, Bennett ED (2001) Base excess and lactate as prognostic indicators for patients admitted to intensive care. Intensive Care Med 27:74–83PubMedCrossRefGoogle Scholar
  121. 121.
    Husain FA, Martin MJ, Mullenix PS, Steele SR, Elliott DC (2003) Serum lactate and base deficit as predictors of mortality and morbidity. Am J Surg 185:485–491PubMedCrossRefGoogle Scholar
  122. 122.
    Cerovic O, Golubovic V, Spec-Marn A, Kremzar B, Vidmar G (2003) Relationship between injury severity and lactate levels in severely injured patients. Intensive Care Med 29:1300–1305PubMedCrossRefGoogle Scholar
  123. 123.
    Blow O, Magliore L, Claridge JA, Butler K, Young JS (1999) The golden hour and the silver day: detection and correction of occult hypoperfusion within 24 hours improves outcome from major trauma. J Trauma 47:964–969PubMedGoogle Scholar
  124. 124.
    Estenssoro E, Dubin A, Laffaire E, Canales H, Saenz G, Moseinco M, Pozo M, Gomez A, Baredes N, Jannello G, Osanik J (2002). Incidence, clinical course, and outcome in 217 patients with acute respiratory distress syndrome. Crit Care Med 30:2450–2456PubMedCrossRefGoogle Scholar
  125. 125.
    Polonen P, Ruokonen E, Hippelainen M, Poyhonen M, Takala J (2000) A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg 90:1052–1059PubMedCrossRefGoogle Scholar
  126. 126.
    Gutierrez G, Bismar H, Dantzker DR, Silva N (1992) Comparison of gastric intramucosal pH with measures of oxygen transport and consumption in critically ill patients. Crit Care Med 20:451–457PubMedCrossRefGoogle Scholar
  127. 127.
    Maynard ND, Bihari DJ, Dalton RN, Beale R, Smithies MN, Mason RC (1997) Liver function and splanchnic ischemia in critically ill patients. Chest 111:180–187PubMedGoogle Scholar
  128. 128.
    Poeze M, Solberg BC, Greve JW, Ramsay G (2005) Monitoring global volume-related hemodynamic or regional variables after initial resuscitation: What is a better predictor of outcome in critically ill septic patients? Crit Care Med 33:2494–500PubMedCrossRefGoogle Scholar
  129. 129.
    Heard SO, Helsmoortel CM, Kent JC, Shahnarian A, Fink MP (1991) Gastric tonometry in healthy volunteers: effect of ranitidine on calculated intramural pH. Crit Care Med 19:271–274PubMedGoogle Scholar
  130. 130.
    Calvet X, Baigorri F, Duarte M, Joseph D, Saura P, Mas A, Royo C, Artigas A (1997) Effect of sucralfate on gastric intramucosal pH in critically ill patients. Intensive Care Med 23:738–742PubMedCrossRefGoogle Scholar
  131. 131.
    Marik PE, Lorenzana A (1996) Effect of tube feedings on the measurement of gastric intramucosal pH. Crit Care Med 24:1498–1500PubMedCrossRefGoogle Scholar
  132. 132.
    Weil MH, Nakagawa Y, Tang W, Sato Y, Ercoli F, Finegan R, Grayman G, Bisera J (1999) Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med 27:1225–1229PubMedCrossRefGoogle Scholar
  133. 133.
    Marik PE (2001) Sublingual capnography: a clinical validation study. Chest 120:923–927PubMedCrossRefGoogle Scholar
  134. 134.
    Rackow EC, O'Neil P, Astiz ME, Carpati CM (2001) Sublingual capnometry and indexes of tissue perfusion in patients with circulatory failure. Chest 120:1633–1638PubMedCrossRefGoogle Scholar
  135. 135.
    Marik PE, Bankov A (2003) Sublingual capnometry versus traditional markers of tissue oxygenation in critically ill patients. Crit Care Med 31:818–822PubMedCrossRefGoogle Scholar
  136. 136.
    Gutierrez G, Palizas F, Doglio G, Wainsztein N, Gallesio A, Pacin J, Dubin A, Schiavi E, Jorge M, Pusajo J, Klein F, San Roman E, Dorfman B, Shottlender J, Giniger R (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339:195–199PubMedCrossRefGoogle Scholar
  137. 137.
    Gomersall CD, Joynt GM, Freebairn RC, Hung V, Buckley TA, Oh TE (2000) Resuscitation of critically ill patients based on the results of gastric tonometry: a prospective, randomized, controlled trial. Crit Care Med 28:607–614PubMedCrossRefGoogle Scholar
  138. 138.
    Ivatury RR, Simon RJ, Islam S, Fueg A, Rohman M, Stahl WM (1996) A prospective randomized study of end points of resuscitation after major trauma: global oxygen transport indices versus organ-specific gastric mucosal pH. J Am Coll Surg 183:145–154PubMedGoogle Scholar
  139. 139.
    Group TMTCT (2005) Splanchnic hypoperfusion-directed therapies in trauma: a prospective, randomized trial. Am Surg 71:252–260Google Scholar
  140. 140.
    Ince C (2005) The microcirculation is the motor of sepsis. Crit Care 9 Suppl 4:S13–19CrossRefGoogle Scholar
  141. 141.
    Groner W, Winkelman JW, Harris AG, Ince C, Bouma GJ, Messmer K, Nadeau RG (1999) Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med 5:1209–1212PubMedCrossRefGoogle Scholar
  142. 142.
    Ince C (2005) Sidestream dark field (SDF) imaging: an improved technique to observe sublingual microcirculation. Crit Care 8 [Suppl 1]:P72CrossRefGoogle Scholar
  143. 143.
    Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF (2002) Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 360(9343):1395–1396PubMedCrossRefGoogle Scholar
  144. 144.
    Cohn JN (1997) Blood pressure measurement in shock. Mechanism of inaccuracy in auscultatory and palpatory methods. JAMA 199:118–122CrossRefGoogle Scholar
  145. 145.
    Ibsen B (1968) Treatment of shock with vasodilators and measuring of skin temperature of the big toe. Eksp Khir Anesteziol 13:37–41PubMedGoogle Scholar
  146. 146.
    Joly HR, Weil MH (1969) Temperature of the great toe as an indication of the severity of shock. Circulation 39:131–138PubMedGoogle Scholar
  147. 147.
    Henning RJ, et al. (1979) Measurement of toe temperature for assessing the severity of acute circulatory failure. Surg Gynecol Obstet 149:1–7PubMedGoogle Scholar
  148. 148.
    Vincent JL, Moraine JJ, van der Linden P (1988) Toe temperature versus transcutaneous oxygen tension monitoring during acute circulatory failure. Intensive Care Med 14:64–68PubMedCrossRefGoogle Scholar
  149. 149.
    Kaplan LJ, McPartland K, Santora TA, Trooskin SZ (2001) Start with a subjective assessment of skin temperature to identify hypoperfusion in intensive care unit patients. J Trauma 50:620–627PubMedGoogle Scholar
  150. 150.
    Connors AF Jr, Dawson NV, Shaw PK, Montenegro HD, Nara AR, Martin L (1990). Hemodynamic status in critically ill patients with and without acute heart disease. Chest 98:1200–1206PubMedGoogle Scholar
  151. 151.
    McGee S, Abernethy WB 3rd, Simel DL (1999) The rational clinical examination. Is this patient hypovolemic? JAMA 281:1022–1029PubMedCrossRefGoogle Scholar
  152. 152.
    Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D (1970) Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 283:447–451PubMedCrossRefGoogle Scholar
  153. 153.
    Hall JB (2005) Searching for evidence to support pulmonary artery catheter use in critically ill patients. JAMA 294:1693–1694PubMedCrossRefGoogle Scholar
  154. 154.
    Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, Desbiens N, Goldman L, Wu AW, Califf RM, Fulkerson WJ Jr, Vidaillet H, Broste S, Bellamy P, Lynn J, Knaus WA (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA 276:889–897PubMedCrossRefGoogle Scholar
  155. 155.
    Mackirdy FL, Howie JC (1997) The relationship between the presence of pulmonary artery catheters and the case mixed adjusted outcome of patients admitted to Scottish ICU's. Clin Intensive Care 8:9–13Google Scholar
  156. 156.
    Polanczyk CA, Rohde LE, Goldman L, Cook EF, Thomas EJ, Marcantonio ER, Mangione CM, Lee TH (2001) Right heart catheterization and cardiac complications in patients undergoing noncardiac surgery: an observational study. JAMA 286:309–314PubMedCrossRefGoogle Scholar
  157. 157.
    Murdoch SD, Cohen AT, Bellamy MC (2000) Pulmonary artery catheterization and mortality in critically ill patients. Br J Anaesth 85:611–615PubMedCrossRefGoogle Scholar
  158. 158.
    Sakr Y, Vincent JL, Reinhart K, Payen D, Wiedermann CJ, Zandstra DF, Sprung CL, Sepsis Occurrence in Acutely Ill Patients Investigators (2005). Use of the pulmonary artery catheter is not associated with worse outcome in the ICU. Chest 128:2722–2731PubMedCrossRefGoogle Scholar
  159. 159.
    Vieillard-Baron A, Girou E, Valente E, Brun-Buisson C, Jardin F, Lemaire F, Brochard L (2000) Predictors of mortality in acute respiratory distress syndrom e. Focus On the role of right heart catheterization. Am J Respir Crit Care Med 161:1597–1601PubMedGoogle Scholar
  160. 160.
    Rhodes A, Cusack RJ, Newman PJ, Grounds RM, Bennett ED (2002) A randomised, controlled trial of the pulmonary artery catheter in critically ill patients. Intensive Care Med 28:256–264PubMedCrossRefGoogle Scholar
  161. 161.
    Richard C, Warszawski J, Anguel N, Deye N, Combes A, Barnoud D, Boulain T, Lefort Y, Fartoukh M, Baud F, Boyer A, Brochard L, Teboul JL, French Pulmonary Artery Catheter Study Group (2003) Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA 290:2713–2720PubMedCrossRefGoogle Scholar
  162. 162.
    Harvey S, Harrison DA, Singer M, Ashcroft J, Jones CM, Elbourne D, Brampton W, Williams D, Young D, Rowan K, PAC-Man study collaboration (2005) Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet 366:472–477PubMedCrossRefGoogle Scholar
  163. 163.
    ARDSnet (2006). Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med 354:2213–2224CrossRefGoogle Scholar
  164. 164.
    Guyatt G (1991) A randomized control trial of right-heart catheterization in critically ill patients. Ontario Intensive Care Study Group. J Intensive Care Med 6:91–95PubMedGoogle Scholar
  165. 165.
    Schultz RJ, Whitfield GF, LaMura JJ, Raciti A, Krishnamurthy S (1985) The role of physiologic monitoring in patients with fractures of the hip. J Trauma 25:309–316PubMedCrossRefGoogle Scholar
  166. 166.
    Isaacson IJ, Lowdon JD, Berry AJ, Smith RB 3rd, Knos GB, Weitz FI, Ryan K (1990) The value of pulmonary artery and central venous monitoring in patients undergoing abdominal aortic reconstructive surgery: a comparative study of two selected, randomized groups. J Vasc Surg 12:754–760PubMedCrossRefGoogle Scholar
  167. 167.
    Boyd O, Grounds RM, Bennett ED (1993) A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA 2270:2699–2707CrossRefGoogle Scholar
  168. 168.
    Lobo SM, Salgado PF, Castillo VG, Borim AA, Polachini CA, Palchetti JC, Brienzi SL, de Oliveira GG (2000) Effects of maximizing oxygen delivery on morbidity and mortality in high-risk surgical patients. Crit Care Med 28:3396–3404PubMedCrossRefGoogle Scholar
  169. 169.
    Alia I, Esteban A, Gordo F, Lorente JA, Diaz C, Rodriguez JA, Frutos F (1999) A randomized and controlled trial of the effect of treatment aimed at maximizing oxygen delivery in patients with severe sepsis or septic shock. Chest 115:453–461PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Massimo Antonelli
    • 1
  • Mitchell Levy
    • 2
  • Peter J. D. Andrews
    • 3
  • Jean Chastre
    • 4
  • Leonard D. Hudson
    • 5
  • Constantine Manthous
    • 6
  • G. Umberto Meduri
    • 7
  • Rui P. Moreno
    • 8
  • Christian Putensen
    • 9
  • Thomas Stewart
    • 10
  • Antoni Torres
    • 11
  1. 1.Istituto di Anestesiologia e Rianimazione, Policlinico Universitario A. GemelliUniversità Cattolica del Sacro CuoreRomeItaly
  2. 2.Rhode Island Hospital & Brown UniversityProvidenceUSA
  3. 3.University of Edinburgh & Western General HospitalEdinburghUK
  4. 4.Hopital Pitié SalpétrièreParisFrance
  5. 5.Harborview Medical CenterSeattleUSA
  6. 6.Bridgeport HospitalBridgeportUSA
  7. 7.University of Tennessee HSCMemphisUSA
  8. 8.Hospital de St. António dos CapuchosLisbonPortugal
  9. 9.Operative Intensivmedizin, Klinik und Poliklinik fuer Anaesthesiologie und operative IntensivmedizinUniversity of BonnBonnGermany
  10. 10.Critical Care MedicineMount Sinai HospitalTorontoCanada
  11. 11.Servei de Pneumologia i Allèrgia RespiratòriaHospital Clínic de BarcelonaBarcelonaSpain

Personalised recommendations