Advertisement

Intensive Care Medicine

, Volume 33, Issue 3, pp 495–502 | Cite as

Myocardial lactate deprivation is associated with decreased cardiovascular performance, decreased myocardial energetics, and early death in endotoxic shock

  • Bruno LevyEmail author
  • Arnauld Mansart
  • Chantal Montemont
  • Sebastien Gibot
  • Jean-Pierre Mallie
  • Veronique Regnault
  • Thomas Lecompte
  • Patrick Lacolley
Experimental

Abstract

Objective

We examined whether lactate availability is a limiting factor for heart function during endotoxic shock, and whether lactate deprivation thus induces heart energy depletion, thereby altering cardiovascular performance. The study goals were to determine whether muscle lactate production is linked to β2-stimulation and to ascertain the effects of systemic lactate deprivation on hemodynamics, lactate metabolism, heart energetics, and outcome in a lethal model of rat's endotoxic shock.

Interventions

We modulated the adrenergic pathway in skeletal muscle using microdialysis with ICI-118551, a selective β2-blocker. Muscle lactate formation in endotoxic shock was further inhibited by intravenous infusion of ICI-118551 or dichloroacetate (DCA), an activator of pyruvate dehydrogenase (DCA) and their combination.

Results

Muscle lactate formation was decreased by ICI-118551. During endotoxic shock both ICI-118151 and DCA decreased circulating and heart lactate concentrations in parallel with a decrease in tissue ATP content. The combination ICI-118551-DCA resulted in early cardiovascular collapse and death. The addition of molar lactate to ICI-1185111 plus DCA blunted the effects of ICI-118551+DCA on hemodynamics. Survival was markedly less with ICI-118551 than with endotoxin alone.

Conclusion

Systemic lactate deprivation is detrimental to myocardial energetics, cardiovascular performance, and outcome.

Keywords

Sepsis Animal model Hypoxia Glycolysis Lactic acid Epinephrine 

References

  1. 1.
    Krishnagopalan S, Kumar A, Parrillo JE (2002) Myocardial dysfunction in the patient with sepsis. Curr Opin Crit Care 8:376–388PubMedCrossRefGoogle Scholar
  2. 2.
    Lancel S, Tissier S, Mordon S, Marechal X, Depontieu F, Scherpereel A, Chopin C, Neviere R (2004) Peroxynitrite decomposition catalysts prevent myocardial dysfunction and inflammation in endotoxemic rats. J Am Coll Cardiol 43:2348–2358PubMedCrossRefGoogle Scholar
  3. 3.
    Gibot S, Levy B, Neviere R, Cariou A, Lesur O (2004) [Myocardial dysfunction and septic shock]. Med Sci (Paris) 20:1115–1118Google Scholar
  4. 4.
    James JH, Luchette FA, McCarter FD, Fischer JE (1999) Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 354:505–508PubMedCrossRefGoogle Scholar
  5. 5.
    Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE (2005) Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 365:871–875PubMedCrossRefGoogle Scholar
  6. 6.
    Liggett SB, Shah SD, Cryer PE (1988) Characterization of beta-adrenergic receptors of human skeletal muscle obtained by needle biopsy. Am J Physiol 254:E795–E798PubMedGoogle Scholar
  7. 7.
    Chatham JC (2002) Lactate—the forgotten fuel! J Physiol 542:333PubMedCrossRefGoogle Scholar
  8. 8.
    Salem JE, Stanley WC, Cabrera ME (2004) Computational studies of the effects of myocardial blood flow reductions on cardiac metabolism. Biomed Eng Online 3:15PubMedCrossRefGoogle Scholar
  9. 9.
    Tessier JP, Thurner B, Jungling E, Luckhoff A, Fischer Y (2003) Impairment of glucose metabolism in hearts from rats treated with endotoxin. Cardiovasc Res 60:119–130PubMedCrossRefGoogle Scholar
  10. 10.
    Rosdahl H, Ungerstedt U, Henriksson J (1997) Microdialysis in human skeletal muscle and adipose tissue at low flow rates is possible if dextran-70 is added to prevent loss of perfusion fluid. Acta Physiol Scand 159:261–262PubMedCrossRefGoogle Scholar
  11. 11.
    Hickner RC, Rosdahl H, Borg I, Ungerstedt U, Jorfeldt L, Henriksson J (1992) The ethanol technique of monitoring local blood flow changes in rat skeletal muscle: implications for microdialysis. Acta Physiol Scand 146:87–97PubMedGoogle Scholar
  12. 12.
    Oberbeck R, Schmitz D, Wilsenack K, Schuler M, Pehle B, Schedlowski M, Exton MS (2004) Adrenergic modulation of survival and cellular immune functions during polymicrobial sepsis. Neuroimmunomodulation 11:214–223PubMedCrossRefGoogle Scholar
  13. 13.
    James JH, Wagner KR, King JK, Leffler RE, Upputuri RK, Balasubramaniam A, Friend LA, Shelly DA, Paul RJ, Fischer JE (1999) Stimulation of both aerobic glycolysis and Na(+)-K(+)-ATPase activity in skeletal muscle by epinephrine or amylin. Am J Physiol 277:E176–E186PubMedGoogle Scholar
  14. 14.
    Clausen T, Flatman JA (1980) Beta 2-adrenoceptors mediate the stimulating effect of adrenaline on active electrogenic Na-K-transport in rat soleus muscle. Br J Pharmacol 68:749–755PubMedGoogle Scholar
  15. 15.
    Levy B, Mansart A, Bollaert PE, Franck P, Mallie JP (2003) Effects of epinephrine and norepinephrine on hemodynamics, oxidative metabolism, and organ energetics in endotoxemic rats. Intensive Care Med 29:292–300PubMedGoogle Scholar
  16. 16.
    Saupe KW, Eberli FR, Ingwall JS, Apstein CS (2001) Metabolic support as an adjunct to inotropic support in the hypoperfused heart. J Mol Cell Cardiol 33:261–269PubMedCrossRefGoogle Scholar
  17. 17.
    Nakamura K, Kusuoka H, Ambrosio G, Becker LC (1993) Glycolysis is necessary to preserve myocardial Ca2+ homeostasis during beta-adrenergic stimulation. Am J Physiol 264:H670–H678PubMedGoogle Scholar
  18. 18.
    Mustafa I, Leverve XM (2002) Metabolic and hemodynamic effects of hypertonic solutions: sodium-lactate versus sodium chloride infusion in postoperative patients. Shock 18:306–310PubMedCrossRefGoogle Scholar
  19. 19.
    Chiolero RL, Revelly JP, Leverve X, Gersbach P, Cayeux MC, Berger MM, Tappy L (2000) Effects of cardiogenic shock on lactate and glucose metabolism after heart surgery. Crit Care Med 28:3784–3791PubMedCrossRefGoogle Scholar
  20. 20.
    Schurr A, Payne RS, Miller JJ, Rigor BM (1997) Brain lactate is an obligatory aerobic energy substrate for functional recovery after hypoxia: further in vitro validation. J Neurochem 69:423–426PubMedCrossRefGoogle Scholar
  21. 21.
    Luptak I, Balschi JA, Xing Y, Leone TC, Kelly DP, Tian R (2005) Decreased contractile and metabolic reserve in peroxisome proliferator-activated receptor-alpha-null hearts can be rescued by increasing glucose transport and utilization. Circulation 112:2339–2346PubMedCrossRefGoogle Scholar
  22. 22.
    Johannsson E, Lunde PK, Heddle C, Sjaastad I, Thomas MJ, Bergersen L, Halestrap AP, Blackstad TW, Ottersen OP, Sejersted OM (2001) Upregulation of the cardiac monocarboxylate transporter MCT1 in a rat model of congestive heart failure. Circulation 104:729–734PubMedGoogle Scholar
  23. 23.
    Smith HJ, Halliday SE, Earl DC, Stribling D (1983) Effects of selective (beta-1 and beta-2) and nonselective beta adrenoceptor antagonists on the cardiovascular and metabolic responses to isoproterenol: comparison with ICI 141:292. J Pharmacol Exp Ther 226:211–216PubMedGoogle Scholar
  24. 24.
    Linderman JK, Dallman PR, Rodriguez RE, Brooks GA (1993) Lactate is essential for maintenance of euglycemia in iron-deficient rats at rest and during exercise. Am J Physiol 264:E662–E667PubMedGoogle Scholar
  25. 25.
    Ventura-Clapier R, Garnier A, Veksler V (2004) Energy metabolism in heart failure. J Physiol 555:1–13PubMedCrossRefGoogle Scholar
  26. 26.
    Dhainaut JF, Huyghebaert MF, Monsallier JF, Lefevre G, Dall'Ava-Santucci J, Brunet F, Villemant D, Carli A, Raichvarg D (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75:533–541PubMedGoogle Scholar
  27. 27.
    Kline JA, Thornton LR, Lopaschuk GD, Barbee RW, Watts JA (2000) Lactate improves cardiac efficiency after hemorrhagic shock. Shock 14:215–221PubMedGoogle Scholar
  28. 28.
    Barbee RW, Kline JA, Watts JA (2000) Depletion of lactate by dichloroacetate reduces cardiac efficiency after hemorrhagic shock. Shock 14:208–214PubMedCrossRefGoogle Scholar
  29. 29.
    Stacpoole PW, Harman EM, Curry SH, Baumgartner TG, Misbin RI (1983) Treatment of lactic acidosis with dichloroacetate. N Engl J Med 309:390–396PubMedCrossRefGoogle Scholar
  30. 30.
    Gong H, Sun H, Koch WJ, Rau T, Eschenhagen T, Ravens U, Heubach JF, Adamson DL, Harding SE (2002) Specific beta (2) AR blocker ICI 118:551 actively decreases contraction through a G(i)-coupled form of the beta (2) AR in myocytes from failing human heart. Circulation 105:2497–2503PubMedCrossRefGoogle Scholar
  31. 31.
    Stacpoole PW, Nagaraja NV, Hutson AD (2003) Efficacy of dichloroacetate as a lactate-lowering drug. J Clin Pharmacol 43:683–691PubMedGoogle Scholar
  32. 32.
    Gladden LB (2004) Lactate metabolism—a new paradigm for the third millennium. J Physiol 558:5–30PubMedCrossRefGoogle Scholar
  33. 33.
    Leverve XM, Mustafa I (2002) Lactate: a key metabolite in the intercellular metabolic interplay. Crit Care 6:284–285PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Bruno Levy
    • 1
    Email author
  • Arnauld Mansart
    • 1
  • Chantal Montemont
    • 1
  • Sebastien Gibot
    • 1
  • Jean-Pierre Mallie
    • 1
  • Veronique Regnault
    • 2
  • Thomas Lecompte
    • 2
  • Patrick Lacolley
    • 3
  1. 1.Coordination Circulation UHP-INSERM, Groupe CHOC, Faculté de MédecineUniversité Henri Poincaré Nancy 1NancyFrance
  2. 2.Inserm U734, Faculté de MédecineUniversité Henri Poincaré Nancy 1NancyFrance
  3. 3.Inserm U684, Faculté de MédecineUniversité Henri Poincaré Nancy 1NancyFrance

Personalised recommendations