Intensive Care Medicine

, Volume 33, Issue 2, pp 364–367 | Cite as

Persistently low plasma thioredoxin is associated with meningococcal septic shock in children

  • Matthew E. Callister
  • Anne Burke-Gaffney
  • Gregory J. Quinlan
  • Helen Betts
  • Simon Nadel
  • Timothy W. Evans
Pediatric Brief Report

Abstract

Objective

To compare plasma levels of thioredoxin (Trx), TNF-α and IL-1β in children during the acute phase of meningococcal septic shock (MSS) and in convalescence.

Design and setting

Retrospective, observational study in the paediatric intensive care unit of a postgraduate teaching hospital.

Patients

Thirty-five children requiring intensive care for meningococcal sepsis; paired convalescent samples from 30 survivors (median interval between samples 62 days); 25 healthy control children.

Measurements and results

Plasma Trx levels were significantly lower in the children with MSS, both during the acute illness (5.5 ng/ml, IQR 1.4–11.4) and in convalescence (2.5 ng/ml, IQR 0.4–6.9) than controls (18.8 ng/ml, IQR 7.9–25.0). Levels of IL-1β and TNF-α were higher in patients with acute MSS (30.3 pg/ml, IQR 3.6–63.6, and 145.9 pg/ml, IQR 31.8–278.1 respectively) than controls (3.7 pg/ml, IQR 0–36.9, and 23.8 pg/ml, IQR 0–124.3, respectively). Levels fell in convalescence (3.7 pg/ml, IQR 0–25.5, 3.7 pg/ml, IQR 0–304.8, respectively). Plasma Trx was higher in non-survivors, albeit a small group (n = 5), than in survivors (n = 30). Trx, IL-1β, and TNF-α levels were not correlated with predicted mortality as assessed by the paediatric risk of mortality (PRISM) score.

Conclusions

Children with MSS exhibit persistently low plasma levels of Trx during acute illness and in convalescence.

Keywords

Meningococcal infection Sepsis syndrome Systemic inflammatory response syndrome Thioredoxin Oxidation-reduction Cytokines 

Notes

Acknowledgements

M.C. was supported by a Wellcome Trust Research Training Fellowship; A.B.G. is supported by a Wellcome Trust University Award; G.J.Q. is supported by the Dunhill Medical Trust; H.B. is supported by a research grant from Children of St Mary's Intensive Care Unit (COSMIC). The study was also supported in part by a research grant from the Meningitis Research Foundation. Work performed in both institutions.

References

  1. 1.
    Welch SB, Nadel S (2003) Treatment of meningococcal infection. Arch Dis Child 88:608–614PubMedCrossRefGoogle Scholar
  2. 2.
    Festa M, Mumby S, Nadel S, Gutteridge JM, Quinlan GJ (2002) Antioxidant protection against iron in children with meningococcal sepsis. Crit Care Med 30:1623–1629PubMedCrossRefGoogle Scholar
  3. 3.
    Gromer S, Urig S, Becker K (2004) The thioredoxin system—from science to clinic. Med Res Rev 24:40–89PubMedCrossRefGoogle Scholar
  4. 4.
    Burke-Gaffney A, Callister ME, Nakamura H (2005) Thioredoxin: friend or foe in human disease? Trends Pharmacol Sci 26:398–404PubMedCrossRefGoogle Scholar
  5. 5.
    Pollack MM, Ruttimann UE, Getson PR (1988) Pediatric risk of mortality (PRISM) score. Crit Care Med 16:1110–1116PubMedCrossRefGoogle Scholar
  6. 6.
    Nakamura H, De Rosa S, Roederer M, Anderson MT, Dubs JG, Yodoi J, Holmgren A, Herzenberg LA (1996) Elevation of plasma thioredoxin levels in HIV-infected individuals. Int Immunol 8:603–611PubMedCrossRefGoogle Scholar
  7. 7.
    Holmgren A, Luthman M (1978) Tissue distrubution and subcellular localization of bovine thioredoxin determined by radioimmunoassay. Biochemistry 17:4071–4077PubMedCrossRefGoogle Scholar
  8. 8.
    Callister ME, Burke-Gaffney A, Quinlan GJ, Nicholson AG, Florio R, Nakamura H, Yodoi J, Evans TW (2006) Extracellular thioredoxin levels are increased in patients with acute lung injury. Thorax 61:521–527PubMedCrossRefGoogle Scholar
  9. 9.
    Girardin E, Grau GE, Dayer JM, Roux-Lombard P, Lambert PH (1988) Tumor necrosis factor and interleukin-1 in the serum of children with severe infectious purpura. N Engl J Med 319:397–400PubMedCrossRefGoogle Scholar
  10. 10.
    Hazelzet JA, van der Voort E, Lindemans J, ter Heerdt PG, Neijens HJ (1994) Relation between cytokines and routine laboratory data in children with septic shock and purpura. Intensive Care Med 20:371–374PubMedCrossRefGoogle Scholar
  11. 11.
    Ejima K, Koji T, Nanri H, Kashimura M, Ikeda M (1999) Expression of thioredoxin and thioredoxin reductase in placentae of pregnant mice exposed to lipopolysaccharide. Placenta 20:561–566PubMedCrossRefGoogle Scholar
  12. 12.
    Wollman EE, d'Auriol L, Rimsky L, Shaw A, Jacquot JP, Wingfield P, Graber P, Dessarps F, Robin P, Galibert F (1988) Cloning and expression of a cDNA for human thioredoxin. J Biol Chem 263:15506–15:512PubMedGoogle Scholar
  13. 13.
    Lemarechal H, Allanore Y, Chenevier-Gobeaux C, Ekindjian OG, Kahan A, Borderie D (2006) High redox thioredoxin but low thioredoxin reductase activities in the serum of patients with rheumatoid arthritis. Clin Chim Acta 367:156–161PubMedCrossRefGoogle Scholar
  14. 14.
    Hermans PW, Hibberd ML, Booy R, Daramola O, Hazelzet JA, de Groot R, Levin M (1999) 4G/5G promoter polymorphism in the plasminogen-activator-inhibitor-1 gene and outcome of meningococcal disease. Meningococcal Research Group. Lancet 354:556–560PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Matthew E. Callister
    • 1
  • Anne Burke-Gaffney
    • 1
  • Gregory J. Quinlan
    • 1
  • Helen Betts
    • 2
  • Simon Nadel
    • 2
  • Timothy W. Evans
    • 1
  1. 1.Unit of Critical Care, National Heart and Lung Institute Division, Imperial College Faculty of MedicineRoyal Brompton HospitalLondonUK
  2. 2.Department of Paediatrics, St Mary’s HospitalImperial CollegeLondonUK

Personalised recommendations