Intensive Care Medicine

, Volume 33, Issue 2, pp 326–335 | Cite as

Volume-targeted modes of modern neonatal ventilators: how stable is the delivered tidal volume?

  • Thomas Jaecklin
  • Denis R. Morel
  • Peter C. Rimensberger
Pediatric Original



Volume-targeted modes are designed to deliver a constant tidal volume (Vt) at lowest possible pressure independently of changes in compliance, resistance, and leak of the respiratory system. We examined whether these volume-targeted modes respond rapidly enough to sudden changes in respiratory mechanics (e.g., selective intubation, surfactant administration, endotracheal tube kinking, de-kinking, obstruction), resulting in insufficient or excessive Vt delivery.

Design and setting

Bench study of six neonatal ventilators in the volume-targeted mode simulating preterm and full-term infant settings on a test lung.

Measurements and results

Breath-to-breath expiratory Vt were measured after rapid compliance, resistance, and leak changes. Under our test settings all ventilators showed important volume overshooting following rapid increase in compliance or decrease in resistance. Between one and 16 inflations were required to return to the set Vt. Some ventilators delivered inaccurate Vt under steady state condition while others showed considerable breath-to-breath Vt variability.


We observed inaccurate Vt delivery under specific conditions as well as immediate and sometimes prolonged volume overshooting after a rapid respiratory system compliance increase or resistance decrease in volume-targeted modes of modern neonatal ventilators. Similar discrepancies between the set Vt and the delivered inflations can be harmful in clinical situations, especially in newborns. Their clinical relevance needs to be clarified with safety studies in the neonatal population and we encourage manufacturers to further improve the ventilators algorithms.


Mechanical ventilation Neonate Full-term Preterm Volume-targeted ventilation 

Supplementary material

134_2006_450_MOESM1_ESM.doc (1.3 mb)
Electronic Supplementary Material (DOC 1,3M)


  1. 1.
    Clark RH, Gerstmann DR, Jobe AH, Moffitt ST, Slutsky AS, Yoder BA (2001) Lung injury in neonates: causes, strategies for prevention, and long-term consequences. J Pediatr 139:478–486PubMedCrossRefGoogle Scholar
  2. 2.
    Chiumello D, Pristine G, Slutsky AS (1999) Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med 160:109–116PubMedGoogle Scholar
  3. 3.
    Network TARDS (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 342:1301–1308CrossRefGoogle Scholar
  4. 4.
    Keszler M (2005) Volume-targeted ventilation. J Perinatol (Suppl 2) 25:S19–S22CrossRefGoogle Scholar
  5. 5.
    Lista G, Marangione P, Azzali A, Castoldi F, Pogliani L, Compagnoni G (2000) [The “guaranteed volume” in pressure support ventilation reduces the risk of barotrauma in premature children with severe respiratory syndrome]. Acta Biomed Ateneo Parmense (Suppl 1) 71:453–456Google Scholar
  6. 6.
    Abubakar KM, Keszler M (2001) Patient-ventilator interactions in new modes of patient-triggered ventilation. Pediatr Pulmonol 32:71–75PubMedCrossRefGoogle Scholar
  7. 7.
    Lista G, Colnaghi M, Castoldi F, Condo V, Reali R, Compagnoni G, Mosca F (2004) Impact of targeted-volume ventilation on lung inflammatory response in preterm infants with respiratory distress syndrome (RDS). Pediatr Pulmonol 37:510–514PubMedCrossRefGoogle Scholar
  8. 8.
    Herrera CM, Gerhardt T, Claure N, Everett R, Musante G, Thomas C, Bancalari E (2002) Effects of volume-guaranteed synchronized intermittent mandatory ventilation in preterm infants recovering from respiratory failure. Pediatrics 110:529–533PubMedCrossRefGoogle Scholar
  9. 9.
    Keszler M, Abubakar K (2004) Volume guarantee: stability of tidal volume and incidence of hypocarbia. Pediatr Pulmonol 38:240–245PubMedCrossRefGoogle Scholar
  10. 10.
    Mrozek JD, Bendel-Stenzel EM, Meyers PA, Bing DR, Connett JE, Mammel MC (2000) Randomized controlled trial of volume-targeted synchronized ventilation and conventional intermittent mandatory ventilation following initial exogenous surfactant therapy. Pediatr Pulmonol 29:11–18PubMedCrossRefGoogle Scholar
  11. 11.
    Sinha SK, Donn SM, Gavey J, McCarty M (1997) Randomised trial of volume controlled versus time cycled, pressure limited ventilation in preterm infants with respiratory distress syndrome. Arch Dis Child Fetal Neonatal Ed 77:F202–205PubMedCrossRefGoogle Scholar
  12. 12.
    Piotrowski A, Sobala W, Kawczynski P (1997) Patient-initiated, pressure-regulated, volume-controlled ventilation compared with intermittent mandatory ventilation in neonates: a prospective, randomised study. Intensive Care Med 23:975–981PubMedCrossRefGoogle Scholar
  13. 13.
    Cheema IU, Ahluwalia JS (2001) Feasibility of tidal volume-guided ventilation in newborn infants: a randomized, crossover trial using the volume guarantee modality. Pediatrics 107:1323–1328PubMedCrossRefGoogle Scholar
  14. 14.
    Lista G, Colnaghi M, Castoldi F, Fontana P, Reali R, Mosca F, Compagnoni G (2003) [Lung injury and ventilatory strategies]. Pediatr Med Chir 25:35–41PubMedGoogle Scholar
  15. 15.
    McCallion N, Davis PG, Morley CJ (2004) Volume-targeted versus pressure-limited ventilation in the neonate. Cochrane Database of Systematic Reviews, Cochrane LibraryGoogle Scholar
  16. 16.
    Riley C, Pilcher J (2003) Volume-guaranteed ventilation. Neonatal Netw 22:17–22PubMedGoogle Scholar
  17. 17.
    Collins E, Faciane V, Abbruzzese L (2005) Comparison of Bird Vip Gold ventilator in conventional volume mode to Drager Babylog 8000 Plus in volume guarantee mode a bench study.; accessed 18 September
  18. 18.
    Scalfaro P, Pillow JJ, Sly PD, Cotting J (2001) Reliable tidal volume estimates at the airway opening with an infant monitor during high-frequency oscillatory ventilation. Crit Care Med 29:1925–1930PubMedCrossRefGoogle Scholar
  19. 19.
    Hjalmarson O, Sandberg K (2002) Abnormal lung function in healthy preterm infants. Am J Respir Crit Care Med 165:83–87PubMedGoogle Scholar
  20. 20.
    Kavvadia V, Greenough A, Itakura Y, Dimitriou G (1999) Neonatal lung function in very immature infants with and without RDS. J Perinat Med 27:382–387PubMedCrossRefGoogle Scholar
  21. 21.
    Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323PubMedGoogle Scholar
  22. 22.
    Roupie E, Dambrosio M, Servillo G, Mentec H, el Atrous S, Beydon L, Brun-Buisson C, Lemaire F, Brochard L (1995) Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med 152:121–128PubMedGoogle Scholar
  23. 23.
    Gajic O, Dara SI, Mendez JL, Adesanya AO, Festic E, Caples SM, Rana R, St Sauver JL, Lymp JF, Afessa B, Hubmayr RD (2004) Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med 32:1817–1824PubMedCrossRefGoogle Scholar
  24. 24.
    Bjorklund LJ, Ingimarsson J, Curstedt T, John J, Robertson B, Werner O, Vilstrup CT (1997) Manual ventilation with a few large breaths at birth compromises the therapeutic effect of subsequent surfactant replacement in immature lambs. Pediatr Res 42:348–355PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Thomas Jaecklin
    • 2
  • Denis R. Morel
    • 3
  • Peter C. Rimensberger
    • 1
    • 2
  1. 1.Hôpital des EnfantsGeneva 14Switzerland
  2. 2.Pediatric Intensive Care UnitGeneva University HospitalGeneva 14Switzerland
  3. 3.Anesthesiology Investigation UnitGeneva University HospitalGeneva 14Switzerland

Personalised recommendations