Advertisement

Intensive Care Medicine

, Volume 33, Issue 1, pp 13–24 | Cite as

Lipoproteins in inflammation and sepsis. I. Basic science

  • Oliver Murch
  • Marika Collin
  • Charles J. Hinds
  • Christoph ThiemermannEmail author
Mini series: Basic research-related topics in ICM

Abstract

Background

High-density lipoproteins (HDL) have been shown to bind and neutralize lipopolysaccharide (LPS) and are regarded as possible therapeutic agents for sepsis and conditions associated with local or systemic inflammation. However, in recent years, a multitude of possible immunomodulatory properties other than LPS neutralization have become evident.

Discussion

This review highlights the advances in the understanding of how HDL is protective in both in vitro and in vivo inflammatory settings, including the ability of HDL to modulate adhesion molecule expression, upregulate endothelial nitric oxide synthase and counteract oxidative stress. Also, the active components of HDL and the recent discovery of novel lipid modulators of inflammation are discussed.

Keywords

High Density Lipoprotein Cholesteryl Ester Transfer Protein Reverse Cholesterol Transport Adhesion Molecule Expression eNOS Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Martin GS, Mannino DM, Eaton S, Moss M (2003) The Epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554PubMedCrossRefGoogle Scholar
  2. 2.
    Hoyert DL, Kochanek KD, Murphy SL (1999) Deaths: final data for 1997. Natl Vital Stat Rep 47:1–104Google Scholar
  3. 3.
    Riedemann NC, Guo RF, Ward PA (2003) The enigma of sepsis. J Clin Invest 112:460–467PubMedCrossRefGoogle Scholar
  4. 4.
    Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310PubMedCrossRefGoogle Scholar
  5. 5.
    Smithies MN, Weaver CB (2004) Role of the tissue factor pathway in the pathogenesis and management of multiple organ failure. Blood Coagul Fibrinolysis 15 Suppl 1:S11–S20Google Scholar
  6. 6.
    Andrews P, Azoulay E, Antonelli M, Brochard L, Brun-Buisson C, Dobb G, Fagon JY, Gerlach H, Groeneveld J, Mancebo J, Metnitz P, Nava S, Pugin J, Pinsky M, Radermacher P, Richard C, Tasker R, Vallet B (2005) Year in review in intensive care medicine, 2004. III. Outcome, ICU organisation, scoring, quality of life, ethics, psychological problems and communication in the ICU, immunity and hemodynamics during sepsis, pediatric and neonatal critical care, experimental studies. Intensive Care Med 31:356–372PubMedCrossRefGoogle Scholar
  7. 7.
    Andrews P, Azoulay E, Antonelli M, Brochard L, Brun-Buisson C, Dobb G, Fagon JY, Gerlach H, Groeneveld J, Mancebo J, Metnitz P, Nava S, Pugin J, Pinsky M, Radermacher P, Richard C, Tasker R, Vallet B (2005) Year in review in intensive care medicine, 2004. II. Brain injury, hemodynamic monitoring and treatment, pulmonary embolism, gastrointestinal tract, and renal failure. Intensive Care Med 31:177–188PubMedCrossRefGoogle Scholar
  8. 8.
    Andrews P, Azoulay E, Antonelli M, Brochard L, Brun-Buisson C, Dobb G, Fagon JY, Gerlach H, Groeneveld J, Mancebo J, Metnitz P, Nava S, Pugin J, Pinsky M, Radermacher P, Richard C, Tasker R, Vallet B (2005) Year in review in intensive care medicine, 2004. I. Respiratory failure, infection, and sepsis. Intensive Care Med 31:28–40PubMedCrossRefGoogle Scholar
  9. 9.
    Van Amersfoort ES, van Berkel TJ, Kuiper J (2003) Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev 16:379–414PubMedCrossRefGoogle Scholar
  10. 10.
    Pinsky MR (2004) Dysregulation of the immune response in severe sepsis. Am J Med Sci 328:220–229PubMedCrossRefGoogle Scholar
  11. 11.
    Cockerill GW, McDonald MC, Mota-Filipe H, Cuzzocrea S, Miller NE, Thiemermann C (2001) High density lipoproteins reduce organ injury and organ dysfunction in a rat model of hemorrhagic shock. FASEB J 15:1941–1952PubMedCrossRefGoogle Scholar
  12. 12.
    Cuzzocrea S, Dugo L, Patel NS Di PR, Cockerill GW, Genovese T, Thiemermann C (2004) High-density lipoproteins reduce the intestinal damage associated with ischemia/reperfusion and colitis. Shock 21:342–351PubMedCrossRefGoogle Scholar
  13. 13.
    McDonald MC, Dhadly P, Cockerill GW, Cuzzocrea S, Mota-Filipe H, Hinds CJ, Miller NE, Thiemermann C (2003) Reconstituted high-density lipoprotein attenuates organ injury and adhesion molecule expression in a rodent model of endotoxic shock. Shock 20:551–557PubMedCrossRefGoogle Scholar
  14. 14.
    Thiemermann C, Patel NS, Kvale EO, Cockerill GW, Brown PA, Stewart KN, Cuzzocrea S, Britti D, Mota-Filipe H, Chatterjee PK (2003) High density lipoprotein (HDL) reduces renal ischemia/reperfusion injury. J Am Soc Nephrol 14:1833–1843PubMedCrossRefGoogle Scholar
  15. 15.
    Cockerill GW, Reed S (1999) High-density lipoprotein: multipotent effects on cells of the vasculature. Int Rev Cytol 188:257–297PubMedGoogle Scholar
  16. 16.
    Rye KA, Clay MA, Barter PJ (1999) Remodelling of high density lipoproteins by plasma factors. Atherosclerosis 145:227–238PubMedCrossRefGoogle Scholar
  17. 17.
    Miller NE, Thelle DS, Forde OH, Mjos OD (1977) The Tromso heart-study. High-density lipoprotein and coronary heart-disease: a prospective case-control study. Lancet I:965–968CrossRefGoogle Scholar
  18. 18.
    Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR (1977) High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med 62:707–714PubMedCrossRefGoogle Scholar
  19. 19.
    Reasner CA (2005) What is the most effective strategy for managing diabetic dyslipidaemia? Atheroscler Suppl 6:21–27PubMedCrossRefGoogle Scholar
  20. 20.
    Eckardstein A von, Hersberger M, Rohrer L (2005) Current understanding of the metabolism and biological actions of HDL. Curr Opin Clin Nutr Metab Care 8:147–152CrossRefGoogle Scholar
  21. 21.
    Hudgins LC, Parker TS, Levine DM, Gordon BR, Saal SD, Jiang XC, Seidman CE, Tremaroli JD Lai J, Rubin AL (2003) A single intravenous dose of endotoxin rapidly alters serum lipoproteins and lipid transfer proteins in normal volunteers. J Lipid Res 44:1489–1498PubMedCrossRefGoogle Scholar
  22. 22.
    Levels JH, Lemaire LC, van den Ende AE, van Deventer SJ, van Lanschot JJ (2003) Lipid composition and lipopolysaccharide binding capacity of lipoproteins in plasma and lymph of patients with systemic inflammatory response syndrome and multiple organ failure. Crit Care Med 31:1647–1653PubMedCrossRefGoogle Scholar
  23. 23.
    Rohrer L, Hersberger, M von EA (2004) High density lipoproteins in the intersection of diabetes mellitus, inflammation and cardiovascular disease. Curr Opin Lipidol 15:269–278PubMedCrossRefGoogle Scholar
  24. 24.
    Rall DP, Gaskins JR, Kelly MG (1957) Reduction of febrile response to bacterial polysaccharide following incubation with serum. Am J Physiol 188:559–562PubMedGoogle Scholar
  25. 25.
    Ulevitch RJ, Johnston AR (1978) The modification of biophysical and endotoxic properties of bacterial lipopolysaccharides by serum. J Clin Invest 62:1313–1324PubMedGoogle Scholar
  26. 26.
    Ulevitch RJ, Johnston AR, Weinstein DB (1979) New function for high density lipoproteins. Their participation in intravascular reactions of bacterial lipopolysaccharides. J Clin Invest 64:1516–1524PubMedGoogle Scholar
  27. 27.
    Baumberger C, Ulevitch RJ, Dayer JM (1991) Modulation of endotoxic activity of lipopolysaccharide by high-density lipoprotein. Pathobiology 59:378–383PubMedCrossRefGoogle Scholar
  28. 28.
    Grunfeld C, Marshall M, Shigenaga JK, Moser AH, Tobias P, Feingold KR (1999) Lipoproteins inhibit macrophage activation by lipoteichoic acid. J Lipid Res 40:245–252PubMedGoogle Scholar
  29. 29.
    Tuin A, Huizinga-Van der Vlag A, van Loenen-Weemaes AM, Meijer DK, Poelstra K (2005) On the role and fate of LPS-dephosphorylating activity in the rat liver. Am J Physiol Gastrointest Liver Physiol 290:G377–385PubMedCrossRefGoogle Scholar
  30. 30.
    Harris HW, Grunfeld C, Feingold KR, Read TE, Kane JP, Jones AL, Eichbaum EB, Bland GF, Rapp JH (1993) Chylomicrons alter the fate of endotoxin, decreasing tumor necrosis factor release and preventing death. J Clin Invest 91:1028–1034PubMedGoogle Scholar
  31. 31.
    Rensen PC, Oosten M, Bilt E, Eck M, Kuiper J, Berkel TJ (1997) Human recombinant apolipoprotein E redirects lipopolysaccharide from Kupffer cells to liver parenchymal cells in rats In vivo. J Clin Invest 99:2438–2445PubMedGoogle Scholar
  32. 32.
    Lamping N, Dettmer R, Schroder NW, Pfeil D, Hallatschek W, Burger R, Schumann RR (1998) LPS-binding protein protects mice from septic shock caused by LPS or gram-negative bacteria. J Clin Invest 101:2065–2071PubMedGoogle Scholar
  33. 33.
    Vesy CJ, Kitchens RL, Wolfbauer G, Albers JJ, Munford RS (2000) Lipopolysaccharide-binding protein and phospholipid transfer protein release lipopolysaccharides from Gram-negative bacterial membranes. Infect Immun 68:2410–2417PubMedCrossRefGoogle Scholar
  34. 34.
    Levels JHM, Marquart JA, Abraham PR, van den Ende AE, Molhuizen HOF, van Deventer SJH, Meijers JCM (2005) Lipopolysaccharide Is transferred from high-density to low-density lipoproteins by lipopolysaccharide-binding protein and phospholipid transfer protein. Infect Immun 73:2321–2326PubMedCrossRefGoogle Scholar
  35. 35.
    Flegel WA, Wolpl A, Mannel DN, Northoff H (1989) Inhibition of endotoxin-induced activation of human monocytes by human lipoproteins. Infect Immun 57:2237–2245PubMedGoogle Scholar
  36. 36.
    Cavaillon JM, Fitting C, Haeffner-Cavaillon N, Kirsch SJ, Warren HS (1990) Cytokine response by monocytes and macrophages to free and lipoprotein-bound lipopolysaccharide. Infect Immun 58:2375–2382PubMedGoogle Scholar
  37. 37.
    Kitchens RL, Wolfbauer G, Albers JJ, Munford RS (1999) Plasma lipoproteins promote the release of bacterial lipopolysaccharide from the monocyte cell surface. J Biol Chem 274:34116–34122PubMedCrossRefGoogle Scholar
  38. 38.
    Levine DM, Parker TS, Donnelly TM, Walsh A, Rubin AL (1993) In vivo protection against endotoxin by plasma high density lipoprotein. Proc Natl Acad Sci USA 90:12040–12044PubMedCrossRefGoogle Scholar
  39. 39.
    Feingold KR, Funk JL, Moser AH, Shigenaga JK, Rapp JH, Grunfeld C (1995) Role for circulating lipoproteins in protection from endotoxin toxicity. Infect Immun 63:2041–2046PubMedGoogle Scholar
  40. 40.
    Harris HW, Grunfeld C, Feingold KR, Rapp JH (1990) Human very low density lipoproteins and chylomicrons can protect against endotoxin-induced death in mice. J Clin Invest 86:696–702PubMedGoogle Scholar
  41. 41.
    Hubsch AP, Casas AT, Doran JE (1995) Protective effects of reconstituted high-density lipoprotein in rabbit gram-negative bacteremia models. J Lab Clin Med 126:548–558PubMedGoogle Scholar
  42. 42.
    Casas AT, Hubsch AP, Rogers BC, Doran JE (1995) Reconstituted high-density lipoprotein reduces LPS-stimulated TNF alpha. J Surg Res 59:544–552PubMedCrossRefGoogle Scholar
  43. 43.
    Cockerill GW, Rye KA, Gamble JR, Vadas MA, Barter PJ (1995) High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules. Arterioscler Thromb Vasc Biol 15:1987–1994PubMedGoogle Scholar
  44. 44.
    Park SH, Park JH, Kang JS, Kang YH (2003) Involvement of transcription factors in plasma HDL protection against TNF-alpha-induced vascular cell adhesion molecule-1 expression. Int J Biochem Cell Biol 35:168–182PubMedCrossRefGoogle Scholar
  45. 45.
    Yuhanna IS, Zhu Y, Cox BE, Hahner LD, Osborne-Lawrence S, Lu P, Marcel YL, Anderson RG, Mendelsohn ME, Hobbs HH, Shaul PW (2001) High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat Med 7:853–857PubMedCrossRefGoogle Scholar
  46. 46.
    Wu CC, Ruetten H, Thiemermann C (1996) Comparison of the effects of aminoguanidine and N omega-nitro-L-arginine methyl ester on the multiple organ dysfunction caused by endotoxaemia in the rat. Eur J Pharmacol 300:99–104PubMedCrossRefGoogle Scholar
  47. 47.
    Thiemermann C (1997) Nitric oxide and septic shock. Gen Pharmacol 29:159–166PubMedGoogle Scholar
  48. 48.
    Wray GM, Millar CG, Hinds CJ, Thiemermann C (1998) Selective inhibition of the activity of inducible nitric oxide synthase prevents the circulatory failure, but not the organ injury/dysfunction, caused by endotoxin. Shock 9:329–335PubMedCrossRefGoogle Scholar
  49. 49.
    Kaminski A, Pohl CB, Sponholz C, Ma N, Stamm C, Vollmar B, Steinhoff G (2004) Up-regulation of endothelial nitric oxide synthase inhibits pulmonary leukocyte migration following lung ischemia-reperfusion in mice. Am J Pathol 164:2241–2249PubMedGoogle Scholar
  50. 50.
    Ferretti G, Bacchetti T, Moroni C, Savino S, Liuzzi A, Balzola F, Bicchiega V (2005) Paraoxonase activity in high-density lipoproteins: a comparison between healthy and obese females. J Clin Endocrinol Metab 90:1728–1733PubMedCrossRefGoogle Scholar
  51. 51.
    Watson AD, Berliner JA, Hama SY, La Du BN, Faull KF, Fogelman AM, Navab M (1995) Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. J Clin Invest 96:2882–2891PubMedCrossRefGoogle Scholar
  52. 52.
    Chen G, Li J, Qiang X, Czura CJ, Ochani M, Ochani K, Ulloa L, Yang H, Tracey KJ, Wang P, Sama AE, Wang H (2005) Suppression of HMGB1 release by stearoyl lysophosphatidylcholine: an additional mechanism for its therapeutic effects in experimental sepsis. J Lipid Res 46:623–637PubMedCrossRefGoogle Scholar
  53. 53.
    Yan JJ, Jung JS, Lee JE Lee J, Huh SO, Kim HS, Jung KC, Cho JY, Nam JS, Suh HW, Kim YH, Song DK (2004) Therapeutic effects of lysophosphatidylcholine in experimental sepsis. Nat Med 10:161–167PubMedCrossRefGoogle Scholar
  54. 54.
    Stafforini DM, McIntyre TM, Carter ME, Prescott SM (1987) Human plasma platelet-activating factor acetylhydrolase. Association with lipoprotein particles and role in the degradation of platelet-activating factor. J Biol Chem 262:4215–4222PubMedGoogle Scholar
  55. 55.
    Zimmerman GA, McIntyre TM, Prescott SM, Stafforini DM (2002) The platelet-activating factor signaling system and its regulators in syndromes of inflammation and thrombosis. Crit Care Med 30:S294–S301PubMedCrossRefGoogle Scholar
  56. 56.
    Opal S, Laterre PF, Abraham E, Francois B, Wittebole X, Lowry S, Dhainaut JF, Warren B, Dugernier T, Lopez A, Sanchez M, Demeyer I, Jauregui L, Lorente JA, McGee W, Reinhart K, Kljucar S, Souza S, Pribble J (2004) Recombinant human platelet-activating factor acetylhydrolase for treatment of severe sepsis: results of a phase III, multicenter, randomized, double-blind, placebo-controlled, clinical trial. Crit Care Med 32:332–341PubMedCrossRefGoogle Scholar
  57. 57.
    Cue JI, DiPiro JT, Brunner LJ, Doran JE, Blankenship ME, Mansberger AR, Hawkins ML (1994) Reconstituted high density lipoprotein inhibits physiologic and tumor necrosis factor alpha responses to lipopolysaccharide in rabbits. Arch Surg 129:193–197PubMedGoogle Scholar
  58. 58.
    Emancipator K, Csako G, Elin RJ (1992) In vitro inactivation of bacterial endotoxin by human lipoproteins and apolipoproteins. Infect Immun 60:596–601PubMedGoogle Scholar
  59. 59.
    Flegel WA, Baumstark MW, Weinstock C, Berg A, Northoff H (1993) Prevention of endotoxin-induced monokine release by human low- and high-density lipoproteins and by apolipoprotein A-I. Infect Immun 61:5140–5146PubMedGoogle Scholar
  60. 60.
    Van OM, Rensen PC, Van Amersfoort ES, Van EM, Van Dam AM, Breve JJ, Vogel T, Panet A, van Berkel TJ, Kuiper J (2001) Apolipoprotein E protects against bacterial lipopolysaccharide-induced lethality. A new therapeutic approach to treat gram-negative sepsis. J Biol Chem 276:8820–8824CrossRefGoogle Scholar
  61. 61.
    Goldfarb RD, Parker TS, Levine DM, Glock D, Akhter I, Alkhudari A, McCarthy RJ, David EM, Gordon BR, Saal SD, Rubin AL, Trenholme GM, Parrillo JE (2003) Protein-free phospholipid emulsion treatment improved cardiopulmonary function and survival in porcine sepsis. Am J Physiol Regul Integr Comp Physiol 284:R550–R557PubMedGoogle Scholar
  62. 62.
    Winchell WW, Hardy J, Levine DM, Parker TS, Gordon BR, Saal SD (2002) Effect of administration of a phospholipid emulsion on the initial response of horses administered endotoxin. Am J Vet Res 63:1370–1378PubMedCrossRefGoogle Scholar
  63. 63.
    Gordon BR, Parker TS, Levine DM, Feuerbach F, Saal SD, Sloan BJ Chu C, Stenzel KH, Parrillo JE, Rubin AL (2005) Neutralization of endotoxin by a phospholipid emulsion in healthy volunteers. J Infect Dis 191:1515–1522PubMedCrossRefGoogle Scholar
  64. 64.
    Xia P, Vadas MA, Rye KA, Barter PJ, Gamble JR (1999) High density lipoproteins (HDL) interrupt the sphingosine kinase signaling pathway. A possible mechanism for protection against atherosclerosis by HDL. J Biol Chem 274:33143–33147PubMedCrossRefGoogle Scholar
  65. 65.
    Bolick DT, Srinivasan S, Kim KW, Hatley ME, Clemens JJ, Whetzel A, Ferger N, Macdonald TL, Davis MD, Tsao PS, Lynch KR, Hedrick CC (2005) Sphingosine-1-phosphate prevents tumor necrosis factor-α-mediated monocyte adhesion to aortic endothelium in mice. Arterioscler Thromb Vasc Biol 25:976–981PubMedCrossRefGoogle Scholar
  66. 66.
    Garg SK, Volpe E, Palmieri G, Mattei M, Galati D, Martino A, Piccioni MS, Valente E, De Bonanno E, Baldini PM, Spagnoli LG, Colizzi V, Fraziano M (2004) Sphingosine 1-phosphate induces antimicrobial activity both in vitro and in vivo. J Infect Dis 189:2129–2138PubMedCrossRefGoogle Scholar
  67. 67.
    Nofer JR, Levkau B, Wolinska I, Junker R, Fobker M, von Eckardstein A, Seedorf U, Assmann G (2001) Suppression of endothelial cell apoptosis by high density lipoproteins (HDL) and HDL-associated lysosphingolipids. J Biol Chem 276:34480–34485PubMedCrossRefGoogle Scholar
  68. 68.
    Wu A, Hinds CJ, Thiemermann C (2004) High-density lipoproteins in sepsis and septic shock: metabolism, actions, and therapeutic applications. Shock 21:210–221PubMedCrossRefGoogle Scholar
  69. 69.
    Kimura T, Tomura H, Mogi C, Kuwabara A, Ishiwara M, Shibasawa K, Sato K, Ohwada, S Im DS, Kurose H (2006) Sphingosine 1-phosphate receptors mediate stimulatory and inhibitory signalings for expression of adhesion molecules in endothelial cells. Cell Signal (in press)Google Scholar
  70. 70.
    Nofer JR, Geigenmuller S, Gopfert C, Assmann G, Buddecke E, Schmidt A (2003) High density lipoprotein-associated lysosphingolipids reduce E-selectin expression in human endothelial cells. Biochem Biophys Res Commun 310:98–103PubMedCrossRefGoogle Scholar
  71. 71.
    Finigan JH, Dudek SM, Singleton PA, Chiang ET, Jacobson JR, Camp SM Ye SQ, Garcia JG (2005) Activated protein C mediates novel lung endothelial barrier enhancement: role of sphingosine 1-phosphate receptor transactivation. J Biol Chem 280:17286–17293PubMedCrossRefGoogle Scholar
  72. 72.
    Singleton PA, Dudek SM, Chiang ET, Garcia JG (2005) Regulation of sphingosine 1-phosphate-induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P1 receptor, PI3 kinase, Tiam1/Rac1, and alpha-actinin. FASEB J 19:1646–1656PubMedCrossRefGoogle Scholar
  73. 73.
    Sunden-Cullberg J, Norrby-Teglund A, Rouhiainen A, Rauvala H, Herman G, Tracey KJ, Lee ML, Andersson J, Tokics L, Treutiger CJ (2005) Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Crit Care Med 33:564–573PubMedCrossRefGoogle Scholar
  74. 74.
    Drobnik W, Liebisch G, Audebert FX, Frohlich D, Gluck T, Vogel P, Rothe G, Schmitz G (2003) Plasma ceramide and lysophosphatidylcholine inversely correlate with mortality in sepsis patients. J Lipid Res 44:754–761PubMedCrossRefGoogle Scholar
  75. 75.
    Ma Z, Li J, Yang L, Mu Y, Xie W, Pitt B, Li S (2004) Inhibition of LPS- and CpG DNA-induced TNF-α response by oxidized phospholipids. Am J Physiol Lung Cell Mol Physiol 286:L808–L816PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Oliver Murch
    • 1
  • Marika Collin
    • 1
  • Charles J. Hinds
    • 1
  • Christoph Thiemermann
    • 1
    Email author
  1. 1.St. Bartholomew’s and The Royal London, School of Medicine and Dentistry, Queen Mary University of LondonCentre for Experimental Medicine, Nephrology and Critical Care, William Harvey Research InstituteLondonUK

Personalised recommendations