Intensive Care Medicine

, Volume 33, Issue 1, pp 172–180 | Cite as

Regional lung derecruitment after endotracheal suction during volume- or pressure-controlled ventilation: a study using electric impedance tomography

  • Sophie Lindgren
  • Helena Odenstedt
  • Cecilia Olegård
  • Sören Söndergaard
  • Stefan Lundin
  • Ola Stenqvist



To assess lung volume and compliance changes during open- and closed-system suctioning using electric impedance tomography (EIT) during volume- or pressure-controlled ventilation.

Design and setting

Experimental study in a university research laboratory.


Nine bronchoalveolar saline-lavaged pigs.


Open and closed suctioning using a 14-F catheter in volume- or pressure-controlled ventilation at tidal volume 10 ml/kg, respiratory rate 20 breaths/min, and positive end-expiratory pressure 10 cmH2O.

Measurements and results

Lung volume was monitored by EIT and a modified N2 washout/-in technique. Airway pressure was measured via a pressure line in the endotracheal tube. In four ventral-to-dorsal regions of interest regional ventilation and compliance were calculated at baseline and 30 s and 1, 2, and 10 min after suctioning. Blood gases were followed. At disconnection functional residual capacity (FRC) decreased by 58 ± 24% of baseline and by a further 22 ± 10% during open suctioning. Arterial oxygen tension decreased to 59 ± 14% of baseline value 1 min after open suctioning. Regional compliance deteriorated most in the dorsal parts of the lung. Restitution of lung volume and compliance was significantly slower during pressure-controlled than volume-controlled ventilation.


EIT can be used to monitor rapid lung volume changes. The two dorsal regions of the lavaged lungs are most affected by disconnection and suctioning with marked decreases in compliance. Volume-controlled ventilation can be used to rapidly restitute lung aeration and oxygenation after lung collapse induced by open suctioning.


Acute Lung Injury Electrical impedance tomography Functional residual capacity Monitoring Suctioning Lung recruitment 



We thank Dr. Sven Lethvall, Dr. Anette Nyberg, and Marita Ahlqvist EMA for valuable assistance during experiments. The authors are grateful for advice from Mr. Eckhard Teschner, Dräger Medical AG, concerning the EIT equipment.


  1. 1.
    Brooks D, Anderson CM, Carter MA, Downes LA, Keenan SP, Kelsey CJ, Lacy JB (2001) Clinical practice guidelines for suctioning the airway of the intubated and nonintubated patient. Can Respir J 8:163–181PubMedGoogle Scholar
  2. 2.
    Stenqvist O, Lindgren S, Karason S, Sondergaard S, Lundin S (2001) Warning! Suctioning. A lung model evaluation of closed suctioning systems. Acta Anaesthesiol Scand 45:167–172PubMedCrossRefGoogle Scholar
  3. 3.
    Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, LeGall JR, Morris A, Spragg R (1994) Report of the American-European Consensus Conference on ARDS: definitions, mechanisms, relevant outcomes and clinical trial coordination. The Consensus Committee. Intensive Care Med 20:225–232PubMedCrossRefGoogle Scholar
  4. 4.
    Clark AP, Winslow EH, Tyler DO, White KM (1990) Effects of endotracheal suctioning on mixed venous oxygen saturation and heart rate in critically ill adults. Heart Lung 19:552–557PubMedGoogle Scholar
  5. 5.
    Brochard L, Mion G, Isabey D, Bertrand C, Messadi AA, Mancebo J, Boussignac G, Vasile N, Lemaire F, Harf A (1991) Constant-flow insufflation prevents arterial oxygen desaturation during endotracheal suctioning. Am Rev Respir Dis 144:395–400PubMedGoogle Scholar
  6. 6.
    Lee CK, Ng KS, Tan SG, Ang R (2001) Effect of different endotracheal suctioning systems on cardiorespiratory parameters of ventilated patients. Ann Acad Med Singapore 30:239–244PubMedGoogle Scholar
  7. 7.
    Craig CK, Benson MS, Pierson DJ (1984) Prevention of arterial oxygen desaturation during closed-airway endotracheal suction: effect of ventilator mode. Respir Care 29:1013–1018Google Scholar
  8. 8.
    Harshbarger SA, Hoffman LA, Zullo TG, Pinsky MR (1992) Effects of a closed tracheal suction system on ventilatory and cardiovascular parameters. Am J Crit Care 1:57–61PubMedGoogle Scholar
  9. 9.
    Johnson KL, Kearney PA, Johnson SB, Niblett JB, MacMillan NL, McClain RE (1994) Closed versus open endotracheal suctioning: costs and physiologic consequences. Crit Care Med 22:658–666PubMedCrossRefGoogle Scholar
  10. 10.
    Weitl J, Bettstetter H (1994) Indication for use of the closed suction system in respiratory therapy with high levels of positive end-expiratory pressure. Anaesthesist 43:359–363PubMedCrossRefGoogle Scholar
  11. 11.
    Cereda M, Villa F, Colombo E, Greco G, Nacoti M, Pesenti A (2001) Closed system endotracheal suctioning maintains lung volume during volume-controlled mechanical ventilation. Intensive Care Med 27:648–654PubMedCrossRefGoogle Scholar
  12. 12.
    Maggiore SM, Iacobone E, Zito G, Conti C, Antonelli M, Proietti R (2002) Closed versus open suctioning techniques. Minerva Anestesiol 68:360–364PubMedGoogle Scholar
  13. 13.
    Maggiore SM, Lellouche F, Pigeot J, Taille S, Deye N, Durrmeyer X, Richard J-C, Mancebo J, Lemaire F, Brochard L (2003) Prevention of endotracheal suctioning-induced alveolar derecruitment in acute lung injury. Am J Respir Crit Care Med 167:1215–1224PubMedCrossRefGoogle Scholar
  14. 14.
    Taggart JA, Dorinsky NL, Sheahan JS (1988) Airway pressures during closed system suctioning. Heart Lung 17:536–542PubMedGoogle Scholar
  15. 15.
    Lindgren S, Almgren B, Hogman M, Lethvall S, Houltz E, Lundin S, Stenqvist O (2004) Effectiveness and side effects of closed and open suctioning: an experimental evaluation. Intensive Care Med 30:1630–1637PubMedCrossRefGoogle Scholar
  16. 16.
    Lasocki S, Lu Q, Sartorius A, Fouillat D, Remerand F, Rouby JJ (2006) Open and closed-circuit endotracheal suctioning in acute lung injury: efficiency and effects on gas exchange. Anesthesiology 104:39–47PubMedCrossRefGoogle Scholar
  17. 17.
    Dyhr T, Bonde J, Larsson A (2003) Lung recruitment manoeuvres are effective in regaining lung volume and oxygenation after open endotracheal suctioning in acute respiratory distress syndrome. Crit Care 7:55–62PubMedCrossRefGoogle Scholar
  18. 18.
    Rouby JJ, Lu Q (2005) Bench-to-bedside review: adjuncts to mechanical ventilation in patients with acute lung injury. Crit Care 9:465–471PubMedCrossRefGoogle Scholar
  19. 19.
    Odenstedt H, Aneman A, Karason S, Stenqvist O, Lundin S (2005) Acute hemodynamic changes during lung recruitment in lavage and endotoxin-induced ALI. Intensive Care Med 31:112–120PubMedCrossRefGoogle Scholar
  20. 20.
    Almgren B, Wickerts CJ, Heinonen E, Hogman M (2004) Side effects of endotracheal suction in pressure- and volume-controlled ventilation. Chest 125:1077–1080PubMedCrossRefGoogle Scholar
  21. 21.
    Victorino JA, Borges JB, Okamoto VN, Matos GF, Tucci MR, Caramez MP, Tanaka H, Sipmann FS, Santos DC, Barbas CS, Carvalho CR, Amato MB (2004) Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med 169:791–800PubMedCrossRefGoogle Scholar
  22. 22.
    Genderingen HR van, van Vught AJ, Jansen JR (2004) Regional lung volume during high-frequency oscillatory ventilation by electrical impedance tomography. Crit Care Med 32:787–794PubMedCrossRefGoogle Scholar
  23. 23.
    United States National Research Council (1996) Commission on Life Sciences. Institute of Laboratory Animal Resources Guide for the care and use of laboratory animals. National Academy PressGoogle Scholar
  24. 24.
    Odenstedt H, Lindgren S, Olegard C, Erlandsson K, Lethvall S, Aneman A, Stenqvist O, Lundin S (2005) Slow moderate pressure recruitment maneuver minimizes negative circulatory and lung mechanic side effects: evaluation of recruitment maneuvers using electric impedance tomography. Intensive Care Med 31:1706–1714PubMedCrossRefGoogle Scholar
  25. 25.
    Lachmann B, Robertson B, Vogel J (1980) In vivo lung lavage as an experimental model of the respiratory distress syndrome. Acta Anaesthesiol Scand 24:231–236PubMedCrossRefGoogle Scholar
  26. 26.
    Adler A, Amyot R, Guardo R, Bates JH, Berthiaume Y (1997) Monitoring changes in lung air and liquid volumes with electrical impedance tomography. J Appl Physiol 83:1762–1767PubMedGoogle Scholar
  27. 27.
    Sondergaard S, Karason S, Hanson A, Nilsson K, Hojer S, Lundin S, Stenqvist O (2002) Direct measurement of intratracheal pressure in pediatric respiratory monitoring. Pediatr Res 51:339–345PubMedCrossRefGoogle Scholar
  28. 28.
    Sondergaard S, Karason S, Wiklund J, Lundin S, Stenqvist O (2003) Alveolar pressure monitoring: an evaluation in a lung model and in patients with acute lung injury. Intensive Care Med 29:955–962PubMedGoogle Scholar
  29. 29.
    Nunes S, Takala J (2000) Evaluation of a new module in the continuous monitoring of respiratory mechanics. Intensive Care Med 26:670–678PubMedCrossRefGoogle Scholar
  30. 30.
    Olegard C, Sondergaard S, Houltz E, Lundin S, Stenqvist O (2005) Estimation of functional residual capacity at the bedside using standard monitoring equipment: a modified nitrogen washout/washin technique requiring a small change of the inspired oxygen fraction. Anesth Analg 101:206–212, table of contentsPubMedCrossRefGoogle Scholar
  31. 31.
    Frerichs I, Dargaville PA, Dudykevych T, Rimensberger PC (2003) Electrical impedance tomography: a method for monitoring regional lung aeration and tidal volume distribution? Intensive Care Med 29:2312–2316PubMedCrossRefGoogle Scholar
  32. 32.
    Kloot TE, Blanch L, Melynne Youngblood A, Weinert C, Adams AB, Marini JJ, Shapiro RS, Nahum A (2000) Recruitment maneuvers in three experimental models of acute lung injury. Effect on lung volume and gas exchange. Am J Respir Crit Care Med 161:1485–1494PubMedGoogle Scholar
  33. 33.
    Rylander C, Hogman M, Perchiazzi G, Magnusson A, Hedenstierna G (2004) Oleic acid lung injury: a morphometric analysis using computed tomography. Acta Anaesthesiol Scand 48:1123–1129PubMedCrossRefGoogle Scholar
  34. 34.
    Hinz J, Hahn G, Neumann P, Sydow M, Mohrenweiser P, Hellige G, Burchardi H (2003) End-expiratory lung impedance change enables bedside monitoring of end-expiratory lung volume change. Intensive Care Med 29:37–43PubMedGoogle Scholar
  35. 35.
    Frerichs I, Hahn G, Hellige G (1999) Thoracic electrical impedance tomographic measurements during volume controlled ventilation-effects of tidal volume and positive end-expiratory pressure. IEEE Trans Med Imaging 18:764–773PubMedCrossRefGoogle Scholar
  36. 36.
    Crotti S, Mascheroni D, Caironi P, Pelosi P, Ronzoni G, Mondino M, Marini JJ, Gattinoni L (2001) Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med 164:131–140PubMedGoogle Scholar
  37. 37.
    Hickling KG (2002) Reinterpreting the pressure-volume curve in patients with acute respiratory distress syndrome. Curr Opin Crit Care 8:32–38PubMedCrossRefGoogle Scholar
  38. 38.
    Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, Russo S, Patroniti N, Cornejo R, Bugedo G (2006) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354:1775–1786PubMedCrossRefGoogle Scholar
  39. 39.
    Rouby JJ, Constantin JM, Roberto De AGC, Zhang M, Lu Q (2004) Mechanical ventilation in patients with acute respiratory distress syndrome. Anesthesiology 101:228–234PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Sophie Lindgren
    • 1
  • Helena Odenstedt
    • 1
  • Cecilia Olegård
    • 1
  • Sören Söndergaard
    • 1
  • Stefan Lundin
    • 1
  • Ola Stenqvist
    • 1
  1. 1.Department of Anesthesia and Intensive CareSahlgrenska University HospitalGothenburgSweden

Personalised recommendations