Intensive Care Medicine

, Volume 33, Issue 1, pp 163–171 | Cite as

Increased intra-abdominal pressure affects respiratory variations in arterial pressure in normovolaemic and hypovolaemic mechanically ventilated healthy pigs

  • Serge Duperret
  • Franck Lhuillier
  • Vincent Piriou
  • Emmanuel Vivier
  • Olivier Metton
  • Patricia Branche
  • Guy Annat
  • Karim Bendjelid
  • Jean Paul Viale
Experimental

Abstract

Objective

To evaluate the effect of increased intra-abdominal pressure (IAP) on the systolic and pulse pressure variations induced by positive pressure ventilation in a porcine model.

Design and setting

Experimental study in a research laboratory.

Subjects

Seven mechanically ventilated and instrumented pigs prone to normovolaemia and hypovolaemia by blood withdrawal.

Intervention

Abdominal banding gradually increased IAP in 5-mmHg steps up to 30 mmHg.

Measurements and main results

Variations in systolic pressure, pulse pressure, inferior vena cava flow, and pleural and transmural (LVEDPtm) left-ventricular end-diastolic pressure were recorded at each step. Systolic pressure variations were 6.1 ± 3.1%, 8.5 ± 3.6% and 16.0 ± 5.0% at 0, 10, and 30 mmHg IAP in normovolaemic animals (mean ± SD; p< 0.01 for IAP effect). They were 12.7 ± 4.6%, 13.4 ± 6.7%, and 23.4 ± 6.3% in hypovolaemic animals (p< 0.01 vs normovolaemic group) for the same IAP. Fluctuations of the inferior vena cava flow disappeared as the IAP increased. Breath cycle did not induce any variations of LVEDPtm for 0 and 30 mmHg IAP.

Conclusions

In this model, the systolic pressure and pulse pressure variations, and inferior vena cava flow fluctuations were dependent on IAP values which caused changes in pleural pressure swing, and this dependency was more marked during hypovolaemia. The present study suggests that dynamic indices are not exclusively related to volaemia in the presence of increased IAP. However, their fluid responsiveness predictive value could not be ascertained as no fluid challenge was performed.

Keywords

Intra-abdominal hypertension Systolic pressure variations Echocardiography 

References

  1. 1.
    Pinsky M (1998) Hemodynamic effects of ventilation and ventilatory maneuvers, In: Marini J, Slutsky A (eds) Respiratory–circulation interactions in health and disease. Edited by. Dekker, New York, pp 183–218Google Scholar
  2. 2.
    Morgan BC, Martin WE, Hornbein TF, Crawford EW, Guntheroth WG (1966) Hemodynamic effects of intermittent positive pressure respiration. Anesthesiology 27:584–590PubMedCrossRefGoogle Scholar
  3. 3.
    Jardin F, Farcot JC, Gueret P, Prost JF, Ozier Y, Bourdarias JP (1983) Cyclic changes in arterial pulse during respiratory support. Circulation 68:266–274PubMedGoogle Scholar
  4. 4.
    Perel A, Pizov R, Cotev S (1987) Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology 67:498–502PubMedCrossRefGoogle Scholar
  5. 5.
    Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89:1313–1321PubMedCrossRefGoogle Scholar
  6. 6.
    Coriat P, Vrillon M, Perel A, Baron JF, Le Bret F, Saada M, Viars P (1994) A comparison of systolic blood pressure variations and echocardiographic estimates of end-diastolic left ventricular size in patients after aortic surgery. Anesth Analg 78:46–53PubMedCrossRefGoogle Scholar
  7. 7.
    Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138PubMedGoogle Scholar
  8. 8.
    Feissel M, Michard F, Mangin I, Ruyer O, Faller JP, Teboul JL (2001) Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest 119:867–873PubMedCrossRefGoogle Scholar
  9. 9.
    Malbrain ML, Chiumello D, Pelosi P, Wilmer A, Brienza N, Malcangi V, Bihari D, Innes R, Cohen J, Singer P, Japiassu A, Kurtop E, De Keulenaer BL, Daelemans R, Del Turco M, Cosimini P, Ranieri M, Jacquet L, Laterre PF, Gattinoni L (2004) Prevalence of intra-abdominal hypertension in critically ill patients: a multicentre epidemiological study. Intensive Care Med 30:822–829PubMedCrossRefGoogle Scholar
  10. 10.
    Vivier E, Metton O, Piriou V, Lhuillier F, Cottet-Emard JM, Branche P, Duperret S, Viale JP (2006) Effects of increased intra-abdominal pressure on central circulation. Br J Anaesth 96:701–707PubMedCrossRefGoogle Scholar
  11. 11.
    Fischer L, Van Belle G (1993) Biostatistics: a methodology for the health sciences. Wiley, New YorkGoogle Scholar
  12. 12.
    Perel A (1998) Assessing fluid responsiveness by the systolic pressure variation in mechanically ventilated patients. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89:1309–1310PubMedCrossRefGoogle Scholar
  13. 13.
    Magder S (2004) Clinical usefulness of respiratory variations in arterial pressure. Am J Respir Crit Care Med 169:151–155PubMedCrossRefGoogle Scholar
  14. 14.
    Takata M, Wise RA, Robotham JL (1990) Effects of abdominal pressure on venous return: abdominal vascular zone conditions. J Appl Physiol 69:1961–1972PubMedGoogle Scholar
  15. 15.
    Theres H, Binkau J, Laule M, Heinze R, Hundertmark J, Blobner M, Erhardt W, Baumann G, Stangl K (1999) Phase-related changes in right ventricular cardiac output under volume-controlled mechanical ventilation with positive end-expiratory pressure. Crit Care Med 27:953–958PubMedCrossRefGoogle Scholar
  16. 16.
    Barbier C, Loubieres Y, Schmit C, Hayon J, Ricome JL, Jardin F, Vieillard-Baron A (2004) Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med 30:1740–1746PubMedGoogle Scholar
  17. 17.
    Quintel M, Pelosi P, Caironi P, Meinhardt JP, Luecke T, Herrmann P, Taccone P, Rylander C, Valenza F, Carlesso E, Gattinoni L (2004) An increase of abdominal pressure increases pulmonary edema in oleic acid-induced lung injury. Am J Respir Crit Care Med 169:534–541PubMedCrossRefGoogle Scholar
  18. 18.
    Reuter DA, Bayerlein J, Goepfert MS, Weis FC, Kilger E, Lamm P, Goetz AE (2003) Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med 29:476–480PubMedGoogle Scholar
  19. 19.
    Michard F, Teboul JL, Richard C (2003) Influence of tidal volume on stroke volume variation. Does it really matter? Intensive Care Med 29:1613PubMedCrossRefGoogle Scholar
  20. 20.
    De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL (2005) Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 31:517–523PubMedCrossRefGoogle Scholar
  21. 21.
    Denault AY, Gasior TA, Gorcsan J 3rd, Mandarino WA, Deneault LG, Pinsky MR (1999) Determinants of aortic pressure variation during positive-pressure ventilation in man. Chest 116:176–186PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Serge Duperret
    • 1
  • Franck Lhuillier
    • 1
  • Vincent Piriou
    • 2
  • Emmanuel Vivier
    • 1
  • Olivier Metton
    • 3
  • Patricia Branche
    • 1
  • Guy Annat
    • 4
  • Karim Bendjelid
    • 5
  • Jean Paul Viale
    • 4
  1. 1.Department of Anaesthesiology and Intensive CareHôpital de la Croix-RousseLyonFrance
  2. 2.Department of Anaesthesiology and Intensive CareHôpital Lyon SudLyonFrance
  3. 3.Department of SurgeryHôpital Cardio-vasculaire Louis PradelBronFrance
  4. 4.Laboratoire de Physiologie de l’EnvironnementFaculté de médecineLyonFrance
  5. 5.Department of AnaesthesiologyGeneva University HospitalGenevaSwitzerland

Personalised recommendations