Intensive Care Medicine

, Volume 32, Issue 12, pp 1947–1954 | Cite as

Respiratory mechanics in brain-damaged patients

  • Antonia KoutsoukouEmail author
  • Helen Perraki
  • Asimina Raftopoulou
  • Nikolaos Koulouris
  • Christina Sotiropoulou
  • Anastasia Kotanidou
  • Stylianos Orfanos
  • Charis Roussos



To assess respiratory mechanics on the 1st and 5th days of mechanical ventilation in a cohort of brain-damaged patients on positive end-expiratory pressure (PEEP) of 8 cmH2O or zero PEEP (ZEEP).

Design and setting

Physiological study with randomized control trial design in a multidisciplinary intensive care unit of a university hospital.

Patients and measurements

Twenty-one consecutive mechanically ventilated patients with severe brain damage and no acute lung injury were randomly assigned to be ventilated with ZEEP (n = 10) or with 8 cmH2O of PEEP (n = 11). Respiratory mechanics and arterial blood gases were assessed on days 1 and day 5 of mechanical ventilation.


In the ZEEP group on day 1 static elastance and minimal resistance were above normal limits (18.9 ± 3.8 cmH2O/l and 5.6 ± 2.2 cmH2O/l per second, respectively); on day 5 static elastance and iso-CO2 minimal resistance values were higher than on day 1 (21.2 ± 4.1 cmH2O/l; 7.0 ± 1.9 cmH2O/l per second, respectively). In the PEEP group these parameters did not change significantly. One of the ten patients on ZEEP developed acute lung injury. On day 5 there was a significant decrease in PaO2/FIO2 in both groups.


On day 1 of mechanical ventilation patients with brain damage exhibit abnormal respiratory mechanics. After 5 days of mechanical ventilation on ZEEP static elastance and minimal resistance increased significantly, perhaps reflecting “low lung volume” injury. Both could be prevented by administration of moderate levels of PEEP.


Mechanical ventilation Head injury Hypocapnic bronchoconstriction Ventilator-induced lung injury 


  1. 1.
    Zygun DA, Kortbeek JB, Fick GH, Laupland KB, Doig CJ (2005) Non-neurologic organ dysfunction in severe traumatic brain injury. Crit Care Med 33:654–660PubMedCrossRefGoogle Scholar
  2. 2.
    Morganti-Kossmann MC, Rancan M, Stahel PF, Kossmann T (2002) Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr Opin Crit Care 8:101–105PubMedCrossRefGoogle Scholar
  3. 3.
    Rall JM, Matzilevich DA, Dash PK (2003) Comparative analysis of mRNA levels in the frontal cortex and the hippocampus in the basal state and in response to experimental brain injury. Neuropathol Appl Neurobiol 29:118–131PubMedCrossRefGoogle Scholar
  4. 4.
    Kunkel SL, Lukacs N, Strieter RM (1995) Chemokines and their role in human disease. Agents Actions 46:11–22Google Scholar
  5. 5.
    Campos M, Calixto JB (2000) Neurokinin mediation of edema and inflammation. Neuropeptides 34:314–322PubMedCrossRefGoogle Scholar
  6. 6.
    Glumoff V, Vayrynen O, Kangas T, Hallman M (2000) Degree of lung maturity determines the direction of interleukin-1 induced effect on the expression of surfactant proteins. Am J Respir Cell Mol Biol 22:280–288PubMedGoogle Scholar
  7. 7.
    Lopez-Aguilar J, Villagra A, Bernabe F, Murias G, Piancentini E, Real J, Fernadez-Segoviano P, Romero P, Hotchkiss J, Blanch L (2005) Massive brain injury enhances lung damage in an isolated lung model of ventilator-induced lung injury. Crit Care Med 33:1077–1083PubMedCrossRefGoogle Scholar
  8. 8.
    Yildirim E, Kaptanoglou E, Ozisik K, Beskonakli E, Okutan O, Sargon MF, Kilink K, Sakinci U (2004) Ultrastructural changes in pneumocyte type II cells following traumatic brain injury in rats. Eur J Cardiothoracic Surg 25:523–529CrossRefGoogle Scholar
  9. 9.
    Rothen HU, Sporre B, Engberg G, Wegenius G, Hedenstierna G (1998) Airway closure, atelectasis and gas exchange during general anesthesia. Br J Anesth 81:681–686Google Scholar
  10. 10.
    Hedenstierna G, Lundquist H, Lundh B, Tokics C, Strandberg A, Brismar B, Frostell C (1989) Pulmonary densities during anesthesia. An experimental study on lung morphology and gas exchange. Eur Respir J 2:528–535PubMedGoogle Scholar
  11. 11.
    D'Angelo E, Pecchiari M, Baraggia P, Saetta M, Balestro E, Milic-Emili J (2002) Low-volume ventilation causes peripheral airway injury and increased airway resistance in normal rabbits. J Appl Physiol 92:949–956PubMedGoogle Scholar
  12. 12.
    D'Angelo E, Pecchiari M, Saetta M, Balestro E, Milic-Emili J (2004) Dependence of lung injury on inflation rate during low-volume ventilation in normal open-chest rabbits. J Appl Physiol 97:260–268PubMedCrossRefGoogle Scholar
  13. 13.
    D'Angelo E, Pecchiari M, Della Valle P, Koutsoukou A, Milic-Emili J (2005) Effects of mechanical ventilation at low lung volume on respiratory mechanics and nitric oxide exhalation in normal rabbits. J Appl Physiol 99:433–444PubMedCrossRefGoogle Scholar
  14. 14.
    Koutsoukou A, Perraki H, Raftopoulou S, Tromaropoulos A, Kaziani K, Athanasiou K, Korovessi I, Roussos C (2005) The role of positive end-expiratory pressure in preventing low-volume injury in mechanically ventilated brain damage patients. Eur Respir J 26:557sCrossRefGoogle Scholar
  15. 15.
    Teasdale C, Jennett B (1974) Assessment of coma and impaired consciousness: a practical scale. Lancet II:81–84CrossRefGoogle Scholar
  16. 16.
    Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy L, Le Gall JR, Morris A, Spragg R (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824PubMedGoogle Scholar
  17. 17.
    Luce JM, Huseby JS, Kirk W, Butler J (1982) A Starling resistor regulates cerebral venous outflow in dogs. J Appl Physiol 53:1496–1503PubMedGoogle Scholar
  18. 18.
    American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874CrossRefGoogle Scholar
  19. 19.
    Vincent JL, Berre J (2005) Primer on medical management of severe brain injury. Crit Care Med 33:1392–1399PubMedCrossRefGoogle Scholar
  20. 20.
    Bates JHT, Rossi A, Milic-Emili J (1985) Analysis of the behavior of the respiratory system with constant inspiratory flow. J Appl Physiol 58:1840–1848PubMedGoogle Scholar
  21. 21.
    Rossi A, Gottfried SB, Zocchi L, Higgs BD, Lennox S, Calverley PM, Begin P, Grassino A, Milic-Emili J (1985) Measurements of static compliance of the total respiratory system in patients with acute respiratory failure during mechanical ventilation. Am Rev Respir Dis 131:672–677PubMedGoogle Scholar
  22. 22.
    Behrakis PK, Higgs BD, Baydur A, Zin WA, Milic-Emili J (1983) Respiratory mechanics during halothane anesthesia and anesthesia-paralysis in humans. J Appl Physiol 55:1085–1092PubMedGoogle Scholar
  23. 23.
    D'Angelo E, Calderini IS, Tavola M (2001) The effects of CO2 on respiratory mechanics in anesthetized paralyzed humans. Anesthesiology 94:604–610PubMedCrossRefGoogle Scholar
  24. 24.
    Petros AJ, Dorre CJ, Nunn JF (1994) Modification of the iso-shunt lines for low inspired oxygen concentration. Br J Anesth 72:515–522Google Scholar
  25. 25.
    D'Angelo E, Calderini E, Torri G, Rabatto FM, Bono D, Milic-Emili J (1989) Respiratory mechanics in anesthetized paralyzed humans: effects of flow, volume, and time. J Appl Physiol 67:2556–2564PubMedGoogle Scholar
  26. 26.
    Koutsoukou A, Bekos B, Sotiropoulou C, Koulouris NG, Roussos C, Milic-Emili J (2002) Effects of positive end-expiratory pressure on gas exchange and expiratory flow limitation in adult respiratory distress syndrome. Crit Care Med 30:1941–1949PubMedCrossRefGoogle Scholar
  27. 27.
    Turner JM, Mead J, Wohl ME (1968) Elasticity of human lungs in relation to age. J Appl Physiol 25:664–671PubMedGoogle Scholar
  28. 28.
    Dettbarn CL, Davinson LJ (1989) Pulmonary complications in the patient with acute head injury: neurogenic pulmonary edema. Heart Lung 18:583–589PubMedGoogle Scholar
  29. 29.
    Tantucci C, Corbeil C, Chasse M, Braidy J, Matar N, Milic-Emili J (1993) Flow resistance in mechanically ventilated patients with severe neurologic injury. J Crit Care 8:133–139PubMedCrossRefGoogle Scholar
  30. 30.
    Caricato A, Conti G, Della Corte F, Mancino A, Santilli F, Sandroni C, Proietti R, Antonelli M (2005) Effects of PEEP on the intracranial system of patients with head injury and subarachnoid hemorrhage: the role of respiratory system compliance. J Trauma 58:571–576PubMedCrossRefGoogle Scholar
  31. 31.
    Mascia L, Grasso S, Fiore T, Bruno F, Berardino M, Ducati A (2005) Cerebro-pulmonary interactions during the application of low levels of positive end-expiratory pressure. Intensive Care Med 31:373–379PubMedCrossRefGoogle Scholar
  32. 32.
    Macklem PT, Woolcock AJ, Hogg C, Nadel JA, Wilson NJ (1969) Partitioning of pulmonary resistance in the dog. J Appl Physiol 26:798–805PubMedGoogle Scholar
  33. 33.
    International consensus conference in intensive care medicine: ventilator-associated Lung Injury in ARDS (1999) Am J Respir Crit Care Med 160:2118–2124Google Scholar
  34. 34.
    Muscedere JG, Mullen JB, Gun K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149:1327–1334PubMedGoogle Scholar
  35. 35.
    Slutsky A (1999) Lung injury caused by mechanical ventilation. Chest 116:9S–15SCrossRefGoogle Scholar
  36. 36.
    Nucci G, Suki B, Lutchen K (2003) Modeling air-flow related shear stress during heterogeneous constriction and mechanical ventilation. J Appl Physiol 95:348–356PubMedGoogle Scholar
  37. 37.
    Koutsoukou A, Koulouris N, Bekos B, Sotiropoulou C, Kosmas E, Papadima K, Roussos C (2004) Expiratory flow limitation in morbidly obese postoperative mechanically ventilated patients. Acta Anaesthesiol Scand 48:1080–1088PubMedCrossRefGoogle Scholar
  38. 38.
    Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28:596–608PubMedGoogle Scholar
  39. 39.
    Guerin C, LeMasson S, de Varax R, Milic-Emili J, Fournier G (1997) Small airway closure and positive end-expiratory pressure in mechanically ventilated patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 155:1949–1956PubMedGoogle Scholar
  40. 40.
    Collins JV, Clark TJK, Brown J (1975) Airway function in healthy subjects and patients with left heart disease. Clin Sci Mol Med 49:217–228PubMedGoogle Scholar
  41. 41.
    McGuire G, Crossley D, Richards J, Wong D (1997) Effects of varying levels of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure. Crit Care Med 25:1059–1062PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Antonia Koutsoukou
    • 1
    Email author
  • Helen Perraki
    • 1
  • Asimina Raftopoulou
    • 1
  • Nikolaos Koulouris
    • 1
  • Christina Sotiropoulou
    • 1
  • Anastasia Kotanidou
    • 1
  • Stylianos Orfanos
    • 1
  • Charis Roussos
    • 1
  1. 1.Department of Critical Care and Pulmonary Services, Evangelismos General Hospital and M. Simou Laboratory, Medical SchoolUniversity of AthensAthensGreece

Personalised recommendations