Intensive Care Medicine

, Volume 33, Issue 1, pp 96–103 | Cite as

Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients

  • Matthias S. G. Goepfert
  • Daniel A. Reuter
  • Derya Akyol
  • Peter Lamm
  • Erich Kilger
  • Alwin E. GoetzEmail author



We examined whether guiding therapy by an algorithm based on optimizing the global end-diastolic volume index (GEDVI) reduces the need for vasopressor and inotropic support and helps to shorten ICU stay in cardiac surgery patients.

Design and setting

Single-center clinical study with a historical control group at an university hospital.


Forty cardiac bypass surgery patients were included prospectively and compared with a control group.


In the goal-directed therapy (GDT) group hemodynamic management was guided by an algorithm based on GEDVI. Hemodynamic goals were: GEDVI above 640 ml/m2, cardiac index above 2.5 l/min/m2, and mean arterial pressure above 70 mmHg. The control group was treated at the discretion of the attending physician based on central venous pressure, mean arterial pressure, and clinical evaluation.


In the GDT group duration of catecholamine and vasopressor dependence was shorter (187 ± 70 vs. 1458 ± 197 min), and fewer vasopressors (0.73 ± 0.32 vs. 6.67 ± 1.21 mg) and catecholamines (0.01 ± 0.01 vs. 0.83 ± 0.27 mg) were administered. They received more colloids (6918 ± 242 vs. 5514 ± 171 ml). Duration of mechanical ventilation (12.6 ± 3.6 vs. 15.4 ± 4.3 h) and time until achieving status of fit for ICU discharge (25 ± 13 vs. 33 ± 17 h) was shorter in the GDT group.


Guiding therapy by an algorithm based on GEDVI leads to a shortened and reduced need for vasopressors, catecholamines, mechanical ventilation, and ICU therapy in patients undergoing cardiac surgery.


Goal-directed therapy Cardiac surgery Cardiac output Preload Global end-diastolic volume index 



The authors thank the Ludwig Maximilian University Institute for Medical Data Processing, Biometry and Epidemiology for statistical support and calculation. D.A. R. a member of the Pulsion Medical Systems Medical Advisory Board and of a Medical Advisory Board of Fresenius-Kabi; he received a research grant from Pulsion Medical Systems which was not associated with the study submitted. A.E.G. is a member of the Pulsion Medical Systems Medical Advisory Board; he received no grants for this study but for experimental studies on functional hemodynamic monitoring in 1999–2000 (DM 40,000 from Pulsion Medical Systems, Germany) and no patents have been received with in relation to this study except for measurement of cerebral blood flow, together with Dr. Pfeiffer and Prof. Kübler. He personally received no payment with respect to this study; he received no additional honoraria except for travel reimbursements (from Abbott, Baxter, Fresenius Kabi, PMS).

Supplementary material

134_2006_404_MOESM1_ESM.doc (54 kb)
Electronic Supplementary Material (DOC 70K)


  1. 1.
    Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL (2003) Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest 124:1900–1908PubMedCrossRefGoogle Scholar
  2. 2.
    Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121:2000–2008PubMedCrossRefGoogle Scholar
  3. 3.
    Christakis GT, Fremes SE, Naylor CD, Chen E, Rao V, Goldman BS (1996) Impact of preoperative risk and perioperative morbidity on ICU stay following coronary bypass surgery. Cardiovasc Surg 4:29–35PubMedCrossRefGoogle Scholar
  4. 4.
    Ryan TA, Rady MY, Bashour CA, Leventhal M, Lytle B, Starr NJ (1997) Predictors of outcome in cardiac surgical patients with prolonged intensive care stay. Chest 112:1035–1042PubMedGoogle Scholar
  5. 5.
    Weil J, Eschenhagen T, Hirt S, Magnussen O, Mittmann C, Remmers U, Scholz H (1998) Preserved Frank-Starling mechanism in human end stage heart failure. Cardiovasc Res 37:541–548PubMedCrossRefGoogle Scholar
  6. 6.
    Lichtwarck-Aschoff M, Beale R, Pfeiffer UJ (1996) Central venous pressure, pulmonary artery occlusion pressure, intrathoracic blood volume, and right ventricular end-diastolic volume as indicators of cardiac preload. J Crit Care 11:180–188PubMedCrossRefGoogle Scholar
  7. 7.
    Kumar A, Anel R, Bunnell E, Habet K, Zanotti S, Marshall S, Neumann A, Ali A, Cheang M, Kavinsky C, Parrillo JE (2004) Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 32:691–699PubMedCrossRefGoogle Scholar
  8. 8.
    Bouchard MJ, Denault A, Couture P, Guertin MC, Babin D, Ouellet P, Carrier M, Tardif JC (2004) Poor correlation between hemodynamic and echocardiographic indexes of left ventricular performance in the operating room and intensive care unit. Crit Care Med 32:644–648PubMedCrossRefGoogle Scholar
  9. 9.
    Brock H, Gabriel C, Bibl D, Necek S (2002) Monitoring intravascular volumes for postoperative volume therapy. Eur J Anaesthesiol 19:288–294PubMedCrossRefGoogle Scholar
  10. 10.
    Reuter DA, Felbinger TW, Moerstedt K, Weis F, Schmidt C, Kilger E, Goetz AE (2002) Intrathoracic blood volume index measured by thermodilution for preload monitoring after cardiac surgery. J Cardiothorac Vasc Anesth 16:191–195PubMedCrossRefGoogle Scholar
  11. 11.
    Reuter DA, Kirchner A, Felbinger TW, Weis FC, Kilger E, Lamm P, Goetz AE (2003) Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function. Crit Care Med 31:1399–1404PubMedCrossRefGoogle Scholar
  12. 12.
    Katzenelson R, Perel A, Berkenstadt H, Preisman S, Kogan S, Sternik L, Segal E (2004) Accuracy of transpulmonary thermodilution versus gravimetric measurement of extravascular lung water. Crit Care Med 32:1550–1554PubMedCrossRefGoogle Scholar
  13. 13.
    Fernandez-Mondejar E, Castano-Perez J, Rivera-Fernandez R, Colmenero-Ruiz M, Manzano F, Perez-Villares J, de la Chica R (2003) Quantification of lung water by transpulmonary thermodilution in normal and edematous lung. J Crit Care 18:253–258PubMedCrossRefGoogle Scholar
  14. 14.
    Boussat S, Jacques T, Levy B, Laurent E, Gache A, Capellier G, Neidhardt A (2002) Intravascular volume monitoring and extravascular lung water in septic patients with pulmonary edema. Intensive Care Med 28:712–718PubMedCrossRefGoogle Scholar
  15. 15.
    Sakka SG, Ruhl CC, Pfeiffer UJ, Beale R, McLuckie A, Reinhart K, Meier-Hellmann A (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26:180–187PubMedCrossRefGoogle Scholar
  16. 16.
    Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M Early Goal-Directed Therapy Collaborative Group (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377PubMedCrossRefGoogle Scholar
  17. 17.
    Gan TJ, Soppitt A, Maroof M, el-Moalem H, Robertson KM, Moretti E, Dwane P, Glass PS (2002) Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology 97:820–826PubMedCrossRefGoogle Scholar
  18. 18.
    Polonen P, Ruokonen E, Hippelainen M, Poyhonen M, Takala J (2000) A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg 90:1052–1059PubMedCrossRefGoogle Scholar
  19. 19.
    Goepfert MSG, Reuter DA, Akyol D, Kilger E, Goetz AE (2004) Volume management by goal directed therapy reduces catecholamine-need in cardiosurgery patients (abstract) Crit Care Med 30[Suppl 1]:588130Google Scholar
  20. 20.
    Combes A, Berneau JB, Luyt CE, Trouillet JL (2004) Estimation of left ventricular systolic function by single transpulmonary thermodilution. Intensive Care Med 30:1377–1383PubMedGoogle Scholar
  21. 21.
    Sakka SG, Bredle DL, Reinhart K, Meier-Hellmann A (1999) Comparison between intrathoracic blood volume and cardiac filling pressures in the early phase of hemodynamic instability of patients with sepsis or septic shock. J Crit Care 14:78–83PubMedCrossRefGoogle Scholar
  22. 22.
    Sakka SG, Klein M, Reinhart K, Meier-Hellmann A (2002) Prognostic value of extravascular lung water in critically ill patients. Chest 122:2080–2086PubMedCrossRefGoogle Scholar
  23. 23.
    Cheng DC, Newman MF, Duke P, Wong DT, Finegan B, Howie M, Fitch J, Bowdle TA, Hogue C, Hillel Z, Pierce E, Bukenya D (2001) The efficacy and resource utilization of remifentanil and fentanyl in fast-track coronary artery bypass graft surgery: a prospective randomized, double-blinded controlled, multi-center trial. Anesth Analg 92:1094–1102PubMedCrossRefGoogle Scholar
  24. 24.
    Mythen MG, Webb AR (1994) Intra-operative gut mucosal hypoperfusion is associated with increased post-operative complications and cost. Intensive Care Med 20:99–104PubMedCrossRefGoogle Scholar
  25. 25.
    Shoemaker WC, Thangathurai D, Wo CC, Kuchta K, Canas M, Sullivan MJ, Farlo J, Roffey P, Zellman V, Katz RL (1999) Intraoperative evaluation of tissue perfusion in high-risk patients by invasive and noninvasive hemodynamic monitoring. Crit Care Med 27:2147–2152PubMedCrossRefGoogle Scholar
  26. 26.
    Maillet JM, Le Besnerais P, Cantoni M, Nataf P, Ruffenach A, Lessana A, Brodaty D (2003) Frequency, risk factors, and outcome of hyperlactatemia after cardiac surgery. Chest 123:1361–1366PubMedCrossRefGoogle Scholar
  27. 27.
    Shoemaker WC, Patil R, Appel PL, Kram HB (1992) Hemodynamic and oxygen transport patterns for outcome prediction, therapeutic goals, and clinical algorithms to improve outcome. Feasibility of artificial intelligence to customize algorithms. Chest 102:617S–625SGoogle Scholar
  28. 28.
    Kern JW, Shoemaker WC (2002) Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med 30:1686–1692PubMedCrossRefGoogle Scholar
  29. 29.
    Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94:1176–1186PubMedGoogle Scholar
  30. 30.
    McKendry M, McGloin H, Saberi D, Caudwell L, Brady AR, Singer M (2004) Randomised controlled trial assessing the impact of a nurse delivered, flow monitored protocol for optimisation of circulatory status after cardiac surgery. BMJ 329:258–262PubMedCrossRefGoogle Scholar
  31. 31.
    Schmidlin D, Schuepbach R, Bernard E, Ecknauer E, Jenni R, Schmid ER (2001) Indications and impact of postoperative transesophageal echocardiography in cardiac surgical patients. Crit Care Med 29:2143–2148PubMedCrossRefGoogle Scholar
  32. 32.
    Boldt J, Ducke M, Kumle B, Papsdorf M, Zurmeyer EL (2004) Influence of different volume replacement strategies on inflammation and endothelial activation in the elderly undergoing major abdominal surgery. Intensive Care Med 30:416–422PubMedCrossRefGoogle Scholar
  33. 33.
    Pinsky MR (2002) Functional hemodynamic monitoring. Intensive Care Med 28:386–388PubMedCrossRefGoogle Scholar
  34. 34.
    Wilson J, Woods I, Fawcett J, Whall R, Dibb W, Morris C, McManus E (1999) Reducing the risk of major elective surgery: randomised controlled trial of preoperative optimisation of oxygen delivery. BMJ 318:1099–1103PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Matthias S. G. Goepfert
    • 1
    • 2
  • Daniel A. Reuter
    • 1
    • 2
  • Derya Akyol
    • 2
  • Peter Lamm
    • 3
  • Erich Kilger
    • 2
  • Alwin E. Goetz
    • 1
    • 2
    Email author
  1. 1.Department of AnesthesiologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.Department of AnesthesiologyUniversity of MunichMunichGermany
  3. 3.Department of Cardiac SurgeryUniversity of MunichMunichGermany

Personalised recommendations