Intensive Care Medicine

, Volume 32, Issue 12, pp 1979–1986 | Cite as

Effect of inspired oxygen fraction on alveolar derecruitment in acute respiratory distress syndrome

  • Jérôme Aboab
  • Bjorn Jonson
  • Achille Kouatchet
  • Solenne Taille
  • Lisbet Niklason
  • Laurent Brochard
Original

Abstract

Objective

High fractions of inspired oxygen (FIO2) used in acute lung injury (ALI) may promote resorption atelectasis. The impact of derecruitment related to high FIO2 in ALI is debated. We evaluated derecruitment with 100% vs. 60% FIO2 at two levels of positive end-expiratory pressure (PEEP).

Patients

Fourteen consecutive patients with ALI were studied.

Interventions

Recruited volume at two PEEP levels was computed from two pressure-volume curves, recorded from PEEP and from zero end-expiratory pressure, using the sinusoidal flow modulation method. PEEP-induced recruitment was measured during prolonged expiration as the difference between the two curves at a given pressure. PaO2/FIO2 was also measured. PEEP was 5 ± 1 or 14 ± 3 cmH2O and FIO2 was 60% or 100%, yielding four combinations. We looked for differences between the beginning and end of a 30-min period with each combination.

Measurement and results

With low PEEP and 100% FIO2, recruited volume decreased significantly from 68 ± 53 to 39 ± 43 ml and PaO2/FIO2 from 196 ± 104 to 153 ± 83 mmHg. With the three other combinations (low PEEP and 60% FIO2 or high PEEP and 60% or 100% FIO2) none of the parameters decreased significantly.

Conclusion

In mechanically ventilated patients with ALI the breathing of pure oxygen leads to derecruitment, which is prevented by high PEEP.

Keywords

Acute respiratory distress syndrome Acute lung injury Atelectasis Oxygen inhalation Oxygen toxicity 

Supplementary material

134_2006_382_MOESM1_ESM.doc (38 kb)
Electronic Supplementary Material (DOC 38K)

References

  1. 1.
    Dantzker D, Wagner P, West J (1975) Instability of lung units with low Va/Q ratios during O2 breathing. J Appl Physiol 38:886–895Google Scholar
  2. 2.
    Rothen H, Sporre B, Engberg G, Wegenius G, Reber A, Hedenstierna G (1995) Prevention of atelectasis during general anaesthesia. Lancet 345:1387–1391PubMedCrossRefGoogle Scholar
  3. 3.
    Mancini M, Zavala E, Mancebo J, Fernandez C, Barbera J, Rossi A, Roca J, Rodriguez-Roisin R (2001) Mechanisms of pulmonary gas exchange improvement during a protective ventilatory strategy in acute respiratory distress syndrome. Am J Respir Crit Care Med 164:1448–1453PubMedGoogle Scholar
  4. 4.
    Santos C, Ferrer M, Roca J, Torres A, Hernandez C, Rodriguez-Roisin R (2000) Pulmonary gas exchange response to oxygen breathing in acute lung injury. Am J Respir Crit Care Med 161:26–31PubMedGoogle Scholar
  5. 5.
    Suter P, Fairley H, Schlobohm R (1975) Shunt, lung volume and perfusion during short periods of ventilation with oxygen. Anesthesiology 43:617–627PubMedCrossRefGoogle Scholar
  6. 6.
    Lemaire F, Matamis D, Lampron N, Teisseire B, Harf A (1985) Intrapulmonary shunt is not increased by 100% oxygen ventilation in acute respiratory failure. Bull Eur Physiopathol Respir 21:251–256Google Scholar
  7. 7.
    Ranieri MV, Giuliani R, Fiore T, Dambrosio M, Milic-Emili J (1994) Volume-Pressure curve of the respiratory system predicts effects of PEEP in ARDS: “Occlusion” versus “Constant flow” technique. Am J Respir Crit Care Med 149:19–27PubMedGoogle Scholar
  8. 8.
    Jonson B, Richard JC, Straus C, Mancebo J, Lemaire F, Brochard L (1999) Pressure-volume curves and compliance in acute lung injury. Evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 159:1172–1178PubMedGoogle Scholar
  9. 9.
    Richard JC, Brochard L, Vandelet P, Breton L, Maggiore SM, Jonson B, Clabault K, Leroy J, Bonmarchand G (2003) Respective effects of end-expiratory and end-inspiratory pressures on alveolar recruitment in acute lung injury. Crit Care Med 31:89–92PubMedCrossRefGoogle Scholar
  10. 10.
    Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, Bruno F, Slutsky AS (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282:54–61PubMedCrossRefGoogle Scholar
  11. 11.
    Amato M, Barbas C, Medeiros D, Magaldi R, Schettino G, Lorenzi-Filho G, Kairalla R, Deheinzelin D, Munoz C, Oliveira R, Takagaki T, Ribeiro Carvalho C (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354PubMedCrossRefGoogle Scholar
  12. 12.
    Aboab J, Jonson B, Drefelt B, Niklason L, Kouatchet A, Taille S, Lellouche F, Thille A, Brochard L (2004) Effect of inspired oxygen fraction on alveolar de-recruitment in patients with acute respiratory distress syndrome (ARDS). American Thoracic Society C92:507Google Scholar
  13. 13.
    International consensus conferences in intensive care medicine (1999) Ventilator-associated lung injury in ARDS. American Thoracic Society, European Society of Intensive Care Medicine, Société de Réanimation Langue Française. Intensive Care Med 25:1444–1452Google Scholar
  14. 14.
    Svantesson C, Drefeldt B, Sigurdsson S, Larsson A, Brochard L, Jonson B (1999) A single computer-controlled mechanical insufflation allows determination of the pressure-volume relationship of the respiratory system. J Clin Monit 15:9–16CrossRefGoogle Scholar
  15. 15.
    Bitzen U, Drefeldt B, Niklason L, Jonson B (2004) Dynamic elastic pressure-volume loops in healthy pigs recorded with inspiratory and expiratory sinusoidal flow modulation. Relationship to static pressure-volume loops. Intensive Care Med 30:481–488PubMedCrossRefGoogle Scholar
  16. 16.
    Jardin F, Genevray B, Brun-Ney D, Bourdarias JP (1985) Influence of lung and chest wall compliances on transmission of airway pressure to the pleural space in critically ill patients. Chest 88:653–658PubMedGoogle Scholar
  17. 17.
    Richard JC, Maggiore SM, Jonson B, Mancebo J, Lemaire F, Brochard L (2001) Influence ot tidal volume on alveolar recruitment. Respective role of PEEP and a recruitment maneuver. Am J Respir Crit Care Med 163:1609–1613PubMedGoogle Scholar
  18. 18.
    Maggiore S, Lellouche F, Pigeot J, Taillé S, Deye N, Durrmeyer X, Richard J, Mancebo J, Lemaire F, Brochard L (2003) Prevention of endotracheal suctioning-induced alveolar derecruitment in acute lung injury. Am J Respir Crit Care Med 167:1215–1224PubMedCrossRefGoogle Scholar
  19. 19.
    Maggiore SM, Jonson B, Richard JC, Jaber S, Lemaire F, Brochard L (2001) Alveolar derecruitment at decremental PEEP levels in acute lung injury. Comparison with the lower inflection point, oxygenation, and compliance. Am J Respir Crit Care Med 164:795–801PubMedGoogle Scholar
  20. 20.
    Rothen H, Sporre B, Engberg G, Wegenius G, Hedenstierna G (1998) Airway closure, atelectasis and gas exchange during general anaesthesia. Br J Anaesth 81:681–686PubMedGoogle Scholar
  21. 21.
    Rothen H, Neumann P, Berglund J, Valtysson J, Magnusson A, Hedenstierna G (1999) Dynamics of re-expansion of atelectasis during general anaesthesia. Br J Anaesth 82:551–556PubMedGoogle Scholar
  22. 22.
    Rothen HU, Sporre B, Engberg G, Wegenius G, Hedenstierna G (1993) Re-expansion of atelectasis during general anaesthesia: a computed tomography study. Br J Anaesth 71:788–795PubMedGoogle Scholar
  23. 23.
    Wagner P, Saltzman H, West J (1974) Measurement of continuous distributions of ventilation-perfusion ratios: theory. J Appl Physiol 36:588–599PubMedGoogle Scholar
  24. 24.
    Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 342:1301–1308Google Scholar
  25. 25.
    Cakar N, Tuorul M, Demirarslan A, Nahum A, Adams A, Akinci O, Esen F, Telci L (2001) Time required for partial pressure of arterial oxygen equilibration during mechanical ventilation after a step change in fractional inspired oxygen concentration. Intensive Care Med 27:655–659PubMedCrossRefGoogle Scholar
  26. 26.
    Tugrul S, Cakar N, Akinci O, Ozcan P, Disci R, Esen F, Telci L, Akpir K (2005) Time required for equilibration of arterial oxygen pressure after setting optimal positive end-expiratory pressure in acute respiratory distress syndrome. Crit Care Med 33:995–1000PubMedCrossRefGoogle Scholar
  27. 27.
    Katz JA, Ozanne GM, Zinn SE, Fairley HB (1981) Time course and mechanisms of lung-volume increase with PEEP in acute pulmonary failure. Anesthesiology 54:9–16PubMedCrossRefGoogle Scholar
  28. 28.
    De Robertis E, Liu J, Blomquist S, Dahm P, Thorne J, Jonson B (2001) Elastic properties of the lung and the chest wall in young and adult healthy pigs. Eur Respir J 17:703–711PubMedCrossRefGoogle Scholar
  29. 29.
    Villagra A, Ochagavia A, Vatua S, Murias G, Del Mar Fernandez M, Lopez Aguilar J, Fernandez R, Blanch L (2002) Recruitment maneuvers during lung protective ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 165:165–170PubMedGoogle Scholar
  30. 30.
    Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351:327–336PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Jérôme Aboab
    • 1
  • Bjorn Jonson
    • 2
  • Achille Kouatchet
    • 1
  • Solenne Taille
    • 1
  • Lisbet Niklason
    • 2
  • Laurent Brochard
    • 1
    • 3
  1. 1.Service de Réanimation Médicale de l’hôpital Henri MondorCréteilFrance
  2. 2.Department of Clinical PhysiologyUniversity HospitalLundSweden
  3. 3.INSERM Unit 651Faculté de Médecine Paris 12CréteilFrance

Personalised recommendations