Intensive Care Medicine

, Volume 32, Issue 10, pp 1475–1484 | Cite as

The “Lund Concept” for the treatment of severe head trauma – physiological principles and clinical application



The Lund Concept is an approach to the treatment of severe brain trauma that is mainly based on hypotheses originating from basic physiological principles regarding brain volume and cerebral perfusion regulation. Its main attributes have found support in experimental and clinical studies. This review explains the principles of the Lund Concept and is intended to serve as the current guide for its clinical application. The therapy has two main goals: (1) to reduce or prevent an increase in ICP (ICP-targeted goal) and (2) to improve perfusion and oxygenation around contusions (perfusion-targeted goal). The Lund therapy considers the consequences of a disrupted blood–brain barrier for development of brain oedema and the specific consequences of a rigid dura/cranium for general cerebral haemodynamics. It calls attention to the importance of improving perfusion and oxygenation of the injured areas of the brain. This is achieved by normal blood oxygenation, by maintaining normovolaemia with normal haematocrit and plasma protein concentrations, and by antagonizing vasoconstriction through reduction of catecholamine concentration in plasma and sympathetic discharge (minimizing stress and by refraining from vasoconstrictors and active cooling). The therapeutic measures mean normalization of all essential haemodynamic parameters (blood pressure, plasma oncotic pressure, plasma and erythrocyte volumes, PaO2, PaCO2) the use of enteral nutrition, and avoidance of overnutrition. To date, clinical outcome studies using the Lund Concept have shown favourable results.


Brain trauma Brain edema Brain volume regulation Cerebral perfusion Guideline Intracranial pressure Penumbra 



The author received support from the Swedish Research Council (grant no.11581), from the Faculty of Medicine, Lund University, Lund, Sweden, and from Region Skåne, Sweden.


  1. 1.
    Grände PO (1992) New haemodynamic aspects on treatment of posttraumatic brain oedema. Swedish Society of Anaesthesia and Intensive Care 6:41–46Google Scholar
  2. 2.
    Asgeirsson B, Grände PO, Nordström CH (1994) A new therapy of post-trauma brain oedema based on haemodynamic principles for brain volume regulation. Intensive Care Med 20:260–267CrossRefPubMedGoogle Scholar
  3. 3.
    Grände PO (2004) The “Lund Concept” for treatment of severe brain trauma: A physiological approach. In: Vincent JL (ed), Yearbook of intensive care and emergency medicine, Springer, Berlin, pp 806–820Google Scholar
  4. 4.
    Juul N, Morris GF, Marshall SB, Marshall LF (2000) Intracranial hypertension and cerebral perfusion pressure: influence on neurological deterioration and outcome in severe head injury. The Executive Committee of the International Selfotel Trial. J Neurosurg 92:1–6PubMedGoogle Scholar
  5. 5.
    Patel HC, Bouamra O, Woodford M, King AT, Yates DW, Lecky FE (2005) Trends in head injury outcome from 1989 to 2003 and the effect of neurosurgical care. An observational study. Lancet 366:1538–1544CrossRefPubMedGoogle Scholar
  6. 6.
    Marshall LF (2000) Head injury: recent past, present, and future. Review. Neurosurgery 47:546–561CrossRefPubMedGoogle Scholar
  7. 7.
    Slavik RS, Rhoney DH (2000) Pharmacological management of severe traumatic brain injury: an evidence-based review. J Inform Pharmacother 3:309–335Google Scholar
  8. 8.
    Robert I, Schierhout G, Alderson P (1998) Absence of evidence for the effectiveness of five interventions routinely used in the intensive care management of severe head injury: a systematic review. J Neurol Neurosurg Psychiatry 65:729–773Google Scholar
  9. 9.
    Bullock R, Chesnut RM, Clifton C, Ghajar J, Marion DW, Narayan RK, Newell DW, Pitts LH, Rosner MJ, Wilberger JW (1996) Brain Trauma Foundation, American Association of Neurological Surgeons, Joint Section on Neurotrauma and Critical Care: Guidelines for the management of severe head injury. J Neurotrauma 13:641–734CrossRefGoogle Scholar
  10. 10.
    Maas AI, Dearden M, Teasdale GM, Braakman R, Cohadon F, Iannotti F, Karimi A, Lapierre F, Murray G, Ohman J, Persson L, Servadei F, Stocchetti N, Unterberg A (1997) EBIC Guidelines for management of severe head injury in adults. European Brain Injury Consortium. Acta Neurochir 139:286–294CrossRefGoogle Scholar
  11. 11.
    Patel HC, Menon DK, Tebbs S, Hawker R, Hutchinton PJ, Kirkpatrick PJ (2002) Specialist neurocritical care and outcome from head injury. Intensive Care Med 28:529–531CrossRefGoogle Scholar
  12. 12.
    Rosner MJ, Rosner SD, Johnson AH (1995) Cerebral perfusion pressure. Management protocol and clinical results. J Neurosurg 83:949–962PubMedGoogle Scholar
  13. 13.
    Ghajar J (2000) Traumatic brain injury. Lancet 356:923–929CrossRefPubMedGoogle Scholar
  14. 14.
    Mayer SA, Chong JY (2002) Critical care management of increased intracranial pressure. Intensive Care Med 17:55–67CrossRefGoogle Scholar
  15. 15.
    Marik PE, Varon J, Trask T (2002) Management of head injury. Chest 122:699–711CrossRefPubMedGoogle Scholar
  16. 16.
    Grände PO, Asgeirsson B, Nordström CH (1997) Physiologic principles for volume regulation of a tissue enclosed in a rigid shell with application to the injured brain. J Trauma 42:S23–S31PubMedGoogle Scholar
  17. 17.
    Asgeirsson B, Grände PO (1994) Effects of arterial and venous pressure alterations on transcapillary fluid exchange during raised tissue pressure. Intensive Care Med 20:567–572CrossRefPubMedGoogle Scholar
  18. 18.
    Kongstad L, Grände PO (1999) The role of arterial and venous pressure for volume regulation in an organ enclosed in a rigid compartment with application to the injured brain. Acta Anaesthesiol Scand 43:501–508CrossRefPubMedGoogle Scholar
  19. 19.
    Kongstad L, Grände PO (2001) Arterial hypertension increases intracranial pressure in cat after opening of the blood-brain barrier. J Trauma 51:490–496PubMedGoogle Scholar
  20. 20.
    Beaumont A, Hayasaki K, Marmarou A, Barzo P, Fatouros P, Corwin F (2001) Contrasting effects of dopamine therapy in experimental brain injury. J Neurotrauma 18:1359–1372CrossRefPubMedGoogle Scholar
  21. 21.
    Eker C, Asgeirsson B, Grände PO, Schalen W, Nordström CH (1998) Improved outcome after severe head injury with a new therapy based on principles for brain volume regulation and preserved microcirculation. Crit Care Med 26:1881–1886PubMedGoogle Scholar
  22. 22.
    Naredi S, Eden E, Zall S, Stephensen H, Rydehag B (1998) A standardized neurosurgical neurointensive therapy directed toward vasogenic edema after severe traumatic brain injury: clinical results. Intensive Care Med 24:446–451CrossRefPubMedGoogle Scholar
  23. 23.
    Naredi S, Olivecrona M, Lindgren C, Östlund AL, Grände PO, Koskinen LO (2001) An outcome study of severe traumatic head injury using the “Lund therapy” with low-dose prostacyclin. Acta Anaesthesiol Scand 45:402–406CrossRefPubMedGoogle Scholar
  24. 24.
    Elf K, Nilsson P, Ronne-Engström E, Howells T, Enblad P (2005) Cerebral perfusion pressure between 50 and 60 mmHg may be beneficial in head-injured patients: a computerized secondary insult monitoring study. Neurosurgery 56:962–971PubMedGoogle Scholar
  25. 25.
    Rodling Wahlström M, Olivecrona M, Koskinen LOD, Rydenhag B, Naredi S (2005) Severe traumatic brain injury in pediatric patients: treatment and outcome using an intracranial pressure targeted therapy – the Lund concept. Intensive Care Med 31:832–839CrossRefGoogle Scholar
  26. 26.
    Grände PO, Myhre E, Nordström CH, Schliamser S (2002) Treatment of intracranial hypertension and aspects on lumbar dural puncture in severe bacterial meningitis. Acta Anaesthesiol Scand 46:264–270CrossRefPubMedGoogle Scholar
  27. 27.
    Fenstermacher JD (1984) Volume regulation of the central nervous system. In: Staub NC, Taylor AE (eds) Edema. Raven Press, New York, pp 383–404Google Scholar
  28. 28.
    Rippe B, Haraldsson B (1994) Transport of macromolecules across microvascular walls: the two-pore theory. Physiol Rev 74:163–219PubMedGoogle Scholar
  29. 29.
    Beaumont A, Marmarou A, Hayasaki K, Barzo P, Fatouros P, Corwin F, Marmarou C, Dunbar J (2000) The permissive nature of blood brain barrier (BBB) opening in edema formation following traumatic brain injury. Acta Neurochir Suppl 76:125–129PubMedGoogle Scholar
  30. 30.
    Tommasino C (2002) Fluids and the neurosurgical patient. Anesthesiol Clin North America 20:329–346CrossRefPubMedGoogle Scholar
  31. 31.
    Baldwin SA, Fugaccia I, Brown DR, Brown LV, Sheff SW (1996) Blood brain barrier breach following cortical contusion in the rat. J Neurosurg 85:476–481PubMedGoogle Scholar
  32. 32.
    Bulloch R, Statham P, Pattersson J, Wyper D, Hadley D, Teasdale E (1990) The time course of vasogenic oedema after focal human head injury – evidence from SPECT mapping of blood brain barrier defects. Acta Neurochir Suppl 51:286–288Google Scholar
  33. 33.
    Hlatky R, Valadka AB, Robertson CS (2005) Intracranial pressure response to induced hypertension: role of dynamic pressure autoregulation. Neurosurgery 57:917–923CrossRefPubMedGoogle Scholar
  34. 34.
    Tomita H, Ito U, Masaka H, Tominaga B (1994) High colloid oncotic therapy for contusional brain oedema. Acta Neurochir Suppl 60:547–549Google Scholar
  35. 35.
    Drummond JC, Patel PM, Cole DJ, Kelly PJ (1998) The effect of the reduction of colloid oncotic pressure, with and without reduction of osmolality, on post-traumatic cerebral edema. Anesthesiology 88:993–1002CrossRefPubMedGoogle Scholar
  36. 36.
    Marmarou A, Signoretti S, Fatoures PP, Portella G, Aygoli GA, Bulloch MR (2006) Predominance of cellular edema in traumatic brain swelling in patients with severe head injuries. J Neurosurg 104:720–730PubMedGoogle Scholar
  37. 37.
    Unterberg AW, Stover J, Kress B, Kiening KL (2004) Edema and brain trauma. Neuroscience 129:1019–1027CrossRefGoogle Scholar
  38. 38.
    Katayama Y. Mori T, Maeda T, Kawamata T (1998) Pathogenesis of the mass effect of cerebral contusions: rapid increase in osmolality within the contusion necrosis. Acta Neurochir Suppl 71:289–292PubMedGoogle Scholar
  39. 39.
    Nag S (2003) Pathophysiology of blood-brain barrier breakdown. In: Nag S (ed) The blood-brain barrier. Humana Press, Totowa, NJ pp 97–120Google Scholar
  40. 40.
    Bertram CD, Raymond CJ (1991) Measurement of wave speed and compliance in a collapsible tube during self excited oscillations: a test of the choking hypothesis. Med Biol Eng Comput 29:493–500CrossRefPubMedGoogle Scholar
  41. 41.
    Luce JM, Huseby JS, Kirk W, Butler J (1982) A Starling resistor regulates cerebral venous outflow in dogs. J Appl Physiol 53:1496–1503PubMedGoogle Scholar
  42. 42.
    Bader HS, Hicks JW (1992) Hemodynamics of vascular ``waterfall'': is the analogy justified? Resp Physiol 87:205–217CrossRefGoogle Scholar
  43. 43.
    Guyton AC, Hall JE (2000) Textbook of medical physiology, 10th edn. Saunders, PhiladelphiaGoogle Scholar
  44. 44.
    Oertel M, Kelly DF, Lee JH, McArthur DL, Glenn TC, Vespa P, Boscardin WJ, Hovda DA, Martin NA (2002) Efficacy of hyperventilation, blood pressure elevation, and metabolic suppression therapy in controlling intracranial pressure after head injury. J Neurosurg 97:1045–1053PubMedGoogle Scholar
  45. 45.
    Kaieda R, Todd MM, Warner DS (1998) Prolonged reduction in colloid oncotic pressure does not increase brain edema following cryogenic injury in rabbits. Anesthesiology 71:554–560CrossRefGoogle Scholar
  46. 46.
    Videtta W, Villarejo F, Cohen M, Domeniconi G, Santa Cruz R, Piniollos O, Rios F, Maskin B (2002) Effects of positive end-expiratory pressure on intracranial pressure and cerebral perfusion pressure. Acta Neurochir Suppl 81:93–97PubMedGoogle Scholar
  47. 47.
    Durward QJ, Amacher AL, Del Maestro RF, Sibbald WJ (1983) Cerebral and cardiovascular responses to changes in head elevation in patients with intracranial hypertension. J Neurosurg 59:938–944PubMedGoogle Scholar
  48. 48.
    Feldman Z, Kanter MJ, Robertson CS, Contant CF, Hayes C, Sheinberg MA, Villareal CA, Narayan RK, Grossman RG (1992) Effect of head elevation on intracranial pressure, cerebral perfusion pressure, and cerebral blood flow in head-injured patients. J Neurosurg 76:207–211PubMedGoogle Scholar
  49. 49.
    Huynh T, Messer M, Sing RF, Miles W, Jacobs DG, Thomason MH (2002) Positive end-expiratory pressure alters intracranial and cerebral perfusion pressure in severe traumatic brain injury. J Trauma 53:488–492PubMedGoogle Scholar
  50. 50.
    Lovell AT, Marshall AC, Elwell CE, Smith M, Goldstone JC (2000) Changes in cerebral blood volume with changes in position in awake and anesthetized subjects. Anesth Analg 90:372–376CrossRefPubMedGoogle Scholar
  51. 51.
    Asgeirsson B, Grände PO (1996) Local vascular responses to elevation of an organ above the heart. Acta Physiol Scand 156:9–18CrossRefPubMedGoogle Scholar
  52. 52.
    Polin RS, Shaffrey M., Bogaev CA, Tisdale N, Germanson T, Bocchicchio B, Jane JA (1997). Decompressive bifrontal craniectomy in the treatment of severe refractory posttraumatic cerebral edema. Neurosurgery 41:84–92CrossRefPubMedGoogle Scholar
  53. 53.
    Guerra WK, Gaab MR, Dietz H, Mueller JU, Piek J, Fritsch MJ (1999) Surgical decompression for traumatic brain swelling: indications and results. J Neurosurg 90:187–196PubMedGoogle Scholar
  54. 54.
    Bereczki D, Liu M, do Prado GF, Fekete I (2000) Cochrane report. A systematic review of mannitol therapy for acute ischemic stroke and cerebral parenchymal hemorrhage. Stroke 31:2719–2722PubMedGoogle Scholar
  55. 55.
    Kaufmann AM, Cardoso ER (1992) Aggravation of vasogenic cerebral edema by multiple-dose mannitol. J Neurosurg 77:584–589PubMedCrossRefGoogle Scholar
  56. 56.
    Holmin S, Mathiesen T, Shetye J, Biberfeld P (1995) Intracerebral inflammatory response to experimental brain contusion. Acta Neurochir 132:110–119CrossRefGoogle Scholar
  57. 57.
    Rise IR, Risoe C, Kirkeby OJ (1998) Cerebrovascular effects of high intracranial pressure after moderate hemorrhage. J Neurosurg Anesthesiol 10:224–230PubMedGoogle Scholar
  58. 58.
    Chesnut RM, Marshall S.B, Piek J, Blunt BA, Klauber MR, Marshall LF (1993) Early and late systemic hypotension as a frequent and fundamental source of cerebral ischemia following severe brain injury. Acta Neurochir Suppl 59:121–125Google Scholar
  59. 59.
    Rasmussen M (2005) Treatment of elevated intracranial pressure with indomethacin: friend or foe? Acta Anaesthesiol Scand 49:341–350CrossRefPubMedGoogle Scholar
  60. 60.
    Grände PO (1989) The effect of dihydroergotamine in patients with head injury and raised intracranial pressure. Intensive Care Med 15:523–527CrossRefPubMedGoogle Scholar
  61. 61.
    Contant CF, Valadka AB, Gopinath SP, Hannay HJ, Robertson CS (2001) Adult respiratory distress syndrome: a complication of induced hypertension after severe head injury. J Neurosurg 95:560–568PubMedCrossRefGoogle Scholar
  62. 62.
    Mellander S, Nordenfelt I (1970) Comparative effects of dihydroergotamine and noradrenaline on resistance, exchange and capacitance functions in the peripheral circulation. Clin Sci 39:183–201PubMedGoogle Scholar
  63. 63.
    Schalén W, Messeter K, Nordström CH (1992) Complications and side effects during thiopentone therapy in patients with severe head injuries. Acta Anaesthesiol Scand 36:369–377PubMedCrossRefGoogle Scholar
  64. 64.
    Bronchard R, Albaladejo P, Brezac G, Geffroy A, Seince PF, Moris W, Branger C, Marty J (2004) Early onset pneumonia: risk factors and consequences in head trauma patients. Anesthesiology 100:234–239CrossRefPubMedGoogle Scholar
  65. 65.
    Cruickshank JM, Neil-Dwyer G, Degaute JP, Hayes Y, Kuurne T, Kytta J, Vincent JL, Carruthers ME, Patel S (1987) Reduction of stress/catecholamine-induced cardiac necrosis by beta-1 selective blockade. Lancet 2:585–589CrossRefPubMedGoogle Scholar
  66. 66.
    Payen D, Quintin L, Plaisence P, Chiron B, Lhoste F (1990) Head injury: clonidine decreases plasma catecholamines. Crit Care Med 18:392–395CrossRefPubMedGoogle Scholar
  67. 67.
    Thompson HJ, Tkacs NC, Saatman KE, Raghupathi R, McIntosh TK (2003) Hyperthermia following traumatic brain injury: a critical evaluation. Neurobiology of disease 12:163–173CrossRefPubMedGoogle Scholar
  68. 68.
    Marion DW (2005) Controlled normothermia in neurologic intensive care. Crit Care Med 32:S43–S45Google Scholar
  69. 69.
    Polderman KH, Tjong Tjin Joe R, Peerdeman SM, Vandertop WP, Girbes AR (2002) Effects of therapeutic hypothermia on intracranial pressure and outcome in patients with severe head injury. Intensive Care Med 28:1563–1567CrossRefPubMedGoogle Scholar
  70. 70.
    Roth B, Grände PO, Nilsson-Ehle P, Eliasson I (1993) Possible role of short-term parenteral nutrition with fat emulsions for the development of haemophagocytosis with multiple organ failure in a patient with traumatic brain injury. Intensive Care Med 19:111–114CrossRefPubMedGoogle Scholar
  71. 71.
    Clifton G, Miller E, Choi S, Levin HS, McCauley S, Smith KR Jr, Muizelaar JP, Wagner FC Jr, Marion DW, Lerssen TG, Chesnut RM, Schwartz M (2001) Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med 344:556–563CrossRefPubMedGoogle Scholar
  72. 72.
    O'Brian WF, Krammer J, O'Leary TD, Mastrogiannis DS (1993) The effect of acetaminophen on prostacyclin production in pregnant women. Am J Obstet Gynecol 168:1164–1169Google Scholar
  73. 73.
    Marion DW, Puccio A, Wisniewski SR (2002) Effect of hyperventilation on extracellular concentrations of glutamate, lactate, pyruvate, and local cerebral blood flow in patients with severe traumatic brain injury. Crit Care Med 30:2619–2625CrossRefPubMedGoogle Scholar
  74. 74.
    Muizelaar JP, Marmarou A, Ward JD, Kontos HA, Choi SC, Becker DP, Gruemer H, Young HF (1991) Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg 75:731–739PubMedGoogle Scholar
  75. 75.
    Steiner LA, Balestreri M, Johnston AJ, Czosnyka M, Coles JP, Chatfield DA, Smielewski P, Pickard JD, Menon DK (2004) Sustained moderate reductions in arterial CO2 after brain trauma time-course of cerebral blood flow velocity and intracranial pressure. Intensive Care Med 30:2180–2187CrossRefPubMedGoogle Scholar
  76. 76.
    Kreimeier U (2000) Pathophysiology of fluid imbalance. Crit Care 4[Suppl 2]:3–72Google Scholar
  77. 77.
    Ravussin PA, Favre JB, Archer DP, Tommasino C, Boulard G (1994) Treatment of hypovolemia in brain injured patients. Ann Fr Anesth Reanim 13:88–97CrossRefPubMedGoogle Scholar
  78. 78.
    Ekelund A, Reinstrup P, Ryding E, Andersson AM, Molund T, Kristiansson KA, Romner B, Brandt L, Säveland H (2002) Effects of iso- and hypervolemic hemodilution on regional cerebral blood flow and oxygen delivery for patients with vasospasm after aneurysmal subarachnoid hemorrhage. Acta Neurochir (Wien) 144:703–712CrossRefGoogle Scholar
  79. 79.
    Valeri CR, Donahue K, Feingold HM, Cassidy GP, Altschule MD (1986) Increase in plasma volume after the transfusion of washed erythrocytes. Surg Gynecol Obstet 162:30–36PubMedGoogle Scholar
  80. 80.
    Persson J, Grände PO (2005) Volume expansion of albumin, gelatin, hydroxyethyl starch, saline and erythrocytes after haemorrhage in rat. Intensive Care Med 31:296–301CrossRefPubMedGoogle Scholar
  81. 81.
    van de Watering LM, Hermans J, Houbiers J, van den Broek PJ, Bouter H, Boer F, Harvey MS, Huysmans HA, Brand A (1998) Beneficial effects of leucocyte depletion of transfused blood on postoperative complications in patients undergoing cardiac surgery. A randomized clinical trial. Circulation 97:562–568PubMedGoogle Scholar
  82. 82.
    Grände PO, Möller AD, Nordström CH, Ungerstedt U (2000) Low-dose prostacyclin in the treatment of severe brain trauma evaluated with microdialysis and jugular bulb oxygen measurements. Acta Anaesthesiol Scand 44:886–894CrossRefPubMedGoogle Scholar
  83. 83.
    Bentzer P, Mattiasson G, McIntosh TK, Wieloch T, Grände PO (2001) Infusion of prostacyclin following experimental brain injury in the rat reduces cortical lesion volume. J Neurotrauma 18:275–285CrossRefPubMedGoogle Scholar
  84. 84.
    Bentzer P, Venturoli D, Carlsson O, Grände PO (2003) Low dose prostacyclin improves cortical perfusion following experimental brain injury in the rat. J Neurotrauma 20:44CrossRefGoogle Scholar
  85. 85.
    Ståhl N, Ungerstedt U, Nordström CH (2001) Brain energy metabolism during controlled reduction of cerebral perfusion pressure in severe head injuries. Intensive Care Med 27:1215–1223CrossRefPubMedGoogle Scholar
  86. 86.
    Nordström CH, Reinstrup P, Xu W, Gardenfors A, Ungerstedt U (2003). Assessment of the lower limit for cerebral perfusion pressure in severe head injuries by bedside monitoring of regional energy metabolism. Anesthesiology 98:809–814CrossRefPubMedGoogle Scholar
  87. 87.
    Adelson PD, Bratton SL, Carney NA, Chesnut RM, Kochanek PM, du Coudray HE, et al. (2003) Guidelines for the acute medical management of severe traumatic brain injury in infants, children and adolescents. Chapter 8. Cerebral perfusion pressure. Pediatric Critical Care Med 4:S31–33Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Anaesthesiology and Intensive CareUniversity Hospital of LundLundSweden

Personalised recommendations