Intensive Care Medicine

, Volume 32, Issue 12, pp 2042–2048

Lung deposition of continuous and intermittent intravenous ceftazidime in experimental Pseudomonas aeruginosa bronchopneumonia

  • Cassio Girardi
  • Marc Tonnellier
  • Ivan Goldstein
  • Alfonso Sartorius
  • Frederic Wallet
  • Jean-Jacques Rouby
  • The Experimental ICU Study Group
Original

Abstract

Objective

Lung tissue deposition of intravenous ceftazidime administered either continuously or intermittently was compared in ventilated piglets with experimental bronchopneumonia.

Design

Prospective experimental study

Animals

Eighteen anesthetized and ventilated piglets

Interventions

Bronchopneumonia was produced by the intrabronchial inoculation of Pseudomonas aeruginosa characterized by an impaired sensitivity to ceftazidime (MIC 16 mg/l). Ceftazidime was administered either through a continuous infusion of 90 mg/kg per 24 h after a bolus of 30 mg/kg or by an intermittent infusion of 30 mg/kg per 8 h.

Measurements and results

Piglets were killed 24 h after the initiation of continuous ceftazidime (n = 6), and 1 h (peak, n = 6) and 8 h (trough, n = 6) after the third dose following intermittent administration. Lung tissue concentrations of ceftazidime, measured by HPLC, and lung bacterial burden were assessed on multiple postmortem lung specimens. During continuous administration ceftazidime lung tissue concentrations were 9.7 ± 3.8 μg/g. Following intermittent administration peak and trough lung tissue concentrations were, respectively, 7.1 ± 2.4 μg/g and 0.6 ± 1 μg/g. Lung bacterial burden was different after continuous and intermittent administration (median 7.103 vs. 4.102 cfu/g).

Conclusions

Continuous infusion of ceftazidime maintained higher tissue concentrations than intermittent administration.

Keywords

Ceftazidime Continuous infusion Pseudomonas aeruginosa Bronchopneumonia Mechanical ventilation 

References

  1. 1.
    Rubinstein E, Green M, Modan M, Amit P, Bernstein L, Rubinstein A (1989) The effects of nosocomial infections on the length and costs of hospital stay. J Antimicrob Chemother 9 [Suppl A]:93–100Google Scholar
  2. 2.
    Rouby JJ (1996) Nosocomial infection in the critically ill: the lung as a target organ. Anesthesiology 84:757–759PubMedCrossRefGoogle Scholar
  3. 3.
    Cavallo JD, Leblanc F, Fabre R (2000) Surveillance of Pseudomonas aeruginosa sensitivity to antibiotics in France and distribution of beta-lactam resistance mechanisms: 1998 GERPB study. Pathol Biol (Paris) 48:472–477Google Scholar
  4. 4.
    Craig WA (1995) Interrelationship between pharmacokinetics and pharmacodynamics in determining dosage regimens for broad-spectrum cephalosporins. Diagn Microbiol Infect Dis 22:89–96PubMedCrossRefGoogle Scholar
  5. 5.
    Cazzola M (1994) Problems and prospectives in the antibiotic treatment of lower respiratory tract infections. Pulm Pharmacol 7:139–152PubMedCrossRefGoogle Scholar
  6. 6.
    Goldstein I, Bughalo MT, Marquette CH, Lenaour G, Lu Q, Rouby JJ (2001) Mechanical ventilation-induced air-space enlargement during experimental pneumonia in piglets. Am J Respir Crit Care Med 163:958–964PubMedGoogle Scholar
  7. 7.
    Goldstein I, Wallet F, Robert J, Becquemin MH, Marquette CH, Rouby J (2002) Lung tissue concentrations of nebulized amikacin during mechanical ventilation in piglets with healthy lungs. Am J Respir Crit Care Med 165:171–175PubMedGoogle Scholar
  8. 8.
    Goldstein I, Wallet F, Nicolas-Robin A, Ferrari F, Marquette CH, Rouby JJ (2002) Lung deposition and efficiency of nebulized amikacin during Escherichia coli pneumonia in ventilated piglets. Am J Respir Crit Care Med 166:1375–1381PubMedCrossRefGoogle Scholar
  9. 9.
    Myers CM, Blumer JL (1983) Determination of ceftazidime in biological fluids by using high-pressure liquid chromatography. Antimicrob Agents Chemother 24:343–346PubMedGoogle Scholar
  10. 10.
    Dahlberg E (1983) Estimation of the blood contamination of tissue extracts. Anal Biochem 130:108–113PubMedCrossRefGoogle Scholar
  11. 11.
    Baselski VS, el-Torky M, Coalson JJ, Griffin JP (1992) The standardization of criteria for processing and interpreting laboratory specimens in patients with suspected ventilator-associated pneumonia. Chest 102:571S-579SCrossRefGoogle Scholar
  12. 12.
    Baselski VS, Wunderink RG (1994) Bronchoscopic diagnosis of pneumonia. Clin Microbiol Rev 7:533–558PubMedGoogle Scholar
  13. 13.
    Fabregas N, Torres A, El-Ebiary M, Ramirez J, Hernandez C, Gonzalez J, de la Bellacasa JP, de Anta J, Rodriguez-Roisin R (1996) Histopathologic and microbiologic aspects of ventilator-associated pneumonia. Anesthesiology 84:760–771PubMedCrossRefGoogle Scholar
  14. 14.
    Rouby JJ, Martin De Lassale E, Poete P, Nicolas MH, Bodin L, Jarlier V, Le Charpentier Y, Grosset J, Viars P (1992) Nosocomial bronchopneumonia in the critically ill. Histologic and bacteriologic aspects. Am Rev Respir Dis 146:1059–1066PubMedGoogle Scholar
  15. 15.
    Boselli E, Breilh D, Rimmele T, Poupelin JC, Saux MC, Chassard D, Allaouchiche B (2004) Plasma and lung concentrations of ceftazidime administered in continuous infusion to critically ill patients with severe nosocomial pneumonia. Intensive Care Med 30:989–991PubMedCrossRefGoogle Scholar
  16. 16.
    Gomez CM, Cordingly JJ, Palazzo MG (1999) Altered pharmacokinetics of ceftazidime in critically ill patients. Antimicrob Agents Chemother 43:1798–1802PubMedGoogle Scholar
  17. 17.
    Miglioli PA, Xerri L, Palatini P (1991) Influence of the mode of intravenous administration on the penetration of ceftazidime into tissues and pleural exudate of rats. Pharmacology 43:242–246PubMedCrossRefGoogle Scholar
  18. 18.
    Granero L, Chesa-Jimenez J, Torres-Molina F, Peris JE (1998) Distribution of ceftazidime in rat tissues. Biopharm Drug Dispos 19:473–478PubMedCrossRefGoogle Scholar
  19. 19.
    Cazzola M, Gabriella Matera M, Polverino M, Santangelo G, De Franchis I, Rossi F (1995) Pulmonary penetration of ceftazidime. J Chemother 7:50–54PubMedGoogle Scholar
  20. 20.
    Byl B, Baran D, Jacobs F, Herschuelz A, Thys JP (2001) Serum pharmacokinetics and sputum penetration of amikacin 30 mg/kg once daily and of ceftazidime 200 mg/kg/day as a continuous infusion in cystic fibrosis patients. J Antimicrob Chemother 48:325–327PubMedCrossRefGoogle Scholar
  21. 21.
    Wermert D, Marquette CH, Copin MC, Wallet F, Fraticelli A, Ramon P, Tonnel AB (1998) Influence of pulmonary bacteriology and histology on the yield of diagnostic procedures in ventilator-acquired pneumonia. Am J Respir Crit Care Med 158:139–147PubMedGoogle Scholar
  22. 22.
    Marquette CH, Wermert D, Wallet F, Copin MC, Tonnel AB (1999) Characterization of an animal model of ventilator-acquired pneumonia. Chest 115:200–209PubMedCrossRefGoogle Scholar
  23. 23.
    Andes DR, Craig WA (1999) Pharmacokinetics and pharmacodynamics of antibiotics in meningitis. Infect Dis Clin North Am 13:595–618PubMedCrossRefGoogle Scholar
  24. 24.
    Aguilar HE, Meredith TA, Shaarawy A, Kincaid M, Dick J (1995) Vitreous cavity penetration of ceftazidime after intravenous administration. Retina 15:154–159PubMedCrossRefGoogle Scholar
  25. 25.
    Elman M, Goldstein I, Marquette CH, Wallet F, Lenaour G, Rouby JJ (2002) Influence of lung aeration on pulmonary concentrations of nebulized and intravenous amikacin in ventilated piglets with severe bronchopneumonia. Anesthesiology 97:199–206PubMedCrossRefGoogle Scholar
  26. 26.
    Lamer C, de Beco V, Soler P, Calvat S, Fagon JY, Dombret MC, Farinotti R, Chastre J, Gibert C (1993) Analysis of vancomycin entry into pulmonary lining fluid by bronchoalveolar lavage in critically ill patients. Antimicrob Agents Chemother 37:281–286PubMedGoogle Scholar
  27. 27.
    Roosendaal R, Bakker-Woudenberg IA, van den Berg JC, Michel MF (1985) Therapeutic efficacy of continuous versus intermittent administration of ceftazidime in an experimental Klebsiella pneumoniae pneumonia in rats. J Infect Dis 152:373–378PubMedGoogle Scholar
  28. 28.
    Roosendaal R, Bakker-Woudenberg IA, van den Berghe-van Raffe M, Vink-van den Berg JC, Michel BM (1989) Impact of the dosage schedule on the efficacy of ceftazidime, gentamicin and ciprofloxacin in Klebsiella pneumoniae pneumonia and septicemia in leukopenic rats. Eur J Clin Microbiol Infect Dis 8:878–887PubMedCrossRefGoogle Scholar
  29. 29.
    Robaux MA, Dube L, Caillon J, Bugnon D, Kergueris MF, Navas D, Le Conte P, Baron D, Potel G (2001) In vivo efficacy of continuous infusion versus intermittent dosing of ceftazidime alone or in combination with amikacin relative to human kinetic profiles in a Pseudomonas aeruginosa rabbit endocarditis model. J Antimicrob Chemother 47:617–622PubMedCrossRefGoogle Scholar
  30. 30.
    Cappelletty DM, Kang SL, Palmer SM, Rybak MJ (1995) Pharmacodynamics of ceftazidime administered as continuous infusion or intermittent bolus alone and in combination with single daily-dose amikacin against Pseudomonas aeruginosa in an in vitro infection model. Antimicrob Agents Chemother 39:1797–1801PubMedGoogle Scholar
  31. 31.
    Nicolau DP, McNabb J, Lacy MK, Quintiliani R, Nightingale CH (2001) Continuous versus intermittent administration of ceftazidime in intensive care unit patients with nosocomial pneumonia. Int J Antimicrob Agents 17:497–504PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Cassio Girardi
    • 1
    • 2
  • Marc Tonnellier
    • 1
    • 2
  • Ivan Goldstein
    • 1
    • 2
  • Alfonso Sartorius
    • 1
    • 2
  • Frederic Wallet
    • 3
  • Jean-Jacques Rouby
    • 1
    • 2
  • The Experimental ICU Study Group
    • 1
  1. 1.Réanimation Chirurgicale Pierre Viars, Department of AnesthesiologyLa Pitié-Salpêtrière Hospital, University of Paris VIParisFrance
  2. 2.Réanimation Chirurgicale Pierre Viars, Department of AnesthesiologyPitié-Salpêtrière HospitalParisFrance
  3. 3.Department of Bacteriology and INSERM U 416University of MedicineLilleFrance

Personalised recommendations