Advertisement

Intensive Care Medicine

, 32:1392 | Cite as

Body and head position effects on regional lung ventilation in infants: an electrical impedance tomography study

  • Sina Heinrich
  • Holger Schiffmann
  • Alexander Frerichs
  • Adelbert Klockgether-Radke
  • Inéz FrerichsEmail author
Pediatric Original

Abstract

Objective

To determine the effects of body and head positions on the spatial distribution of ventilation in nonintubated spontaneously breathing and mechanically ventilated infants using electrical impedance tomography (EIT).

Design and setting

Prospective study in a neonatal intensive care unit.

Patients

Ten spontaneously breathing (gestational age 38 weeks, postnatal age 13 days) and ten mechanically ventilated infants (gestational age 35 weeks, postnatal age 58 days).

Interventions

Supine and prone postures with different head positions (midline and rotated to the left and right side).

Measurements and results

The distribution of ventilation in the chest cross-section was repeatedly determined from EIT data in each body/head position studied. During spontaneous breathing the tidal volumes in the left lung region were reduced in the supine posture with the head turned to the left as well as in the prone posture with the head rotated to either side when compared with the supine posture with the head in the midline position. During mechanical ventilation the tidal volumes in the left lung region were unaffected by the body and head position except for the prone posture combined with the leftward head rotation which reduced them. In both types of ventilation the tidal volumes in the right lung region were unaffected by the change in body/head position.

Conclusion

The results indicate that the spatial distribution of ventilation is influenced by the body and head position in spontaneously breathing infants. Prone posture with the leftward head rotation has the most prominent effect which is detectable even during mechanical ventilation.

Keywords

Intensive care, neonatal Critical care Electrical impedance tomography Electrical impedance Ventilation distribution Ventilation monitoring 

Supplementary material

134_2006_252_MOESM1_ESM.doc (41 kb)
Electronic Supplementary Material (DOC 41K)

References

  1. 1.
    Schibler A, Hall GL, Businger F, Reinmann B, Wildhaber JH, Cernelc M, Frey U (2002) Measurement of lung volume and ventilation distribution with an ultrasonic flow meter in healthy infants. Eur Respir J 20:912–918PubMedCrossRefGoogle Scholar
  2. 2.
    Aurora P, Gustafsson P, Bush A, Lindblad A, Oliver C, Wallis CE, Stocks J (2004) Multiple breath inert gas washout as a measure of ventilation distribution in children with cystic fibrosis. Thorax 59:1068–1073PubMedCrossRefGoogle Scholar
  3. 3.
    Pillow JJ, Frerichs I, Stocks J (2006) Lung function tests in neonates and infants with chronic lung disease: global and regional ventilation inhomogeneity. Pediatr Pulmonol 41:105–121PubMedCrossRefGoogle Scholar
  4. 4.
    Frerichs I, Braun B, Dudykevych T, Hahn G, Genée D, Hellige G (2004) Distribution of ventilation in young and elderly adults determined by electrical impedance tomography. Respir Physiol Neurobiol 143:63–75PubMedCrossRefGoogle Scholar
  5. 5.
    Riedel T, Richards T, Schibler A (2005) The value of electrical impedance tomography in assessing the effect of body position and positive airway pressures on regional lung ventilation in spontaneously breathing subjects. Intensive Care Med 31:1522–1528PubMedCrossRefGoogle Scholar
  6. 6.
    Smallwood RH, Hampshire AR, Brown BH, Primhak RA, Marven S, Nopp P (1999) A comparison of neonatal and adult lung impedances derived from EIT images. Physiol Meas 20:401–413PubMedCrossRefGoogle Scholar
  7. 7.
    van Genderingen HR, Vugt AJ, Jansen JRC (2003) Estimation of regional lung volume changes by electrical impedance tomography during a pressure-volume maneuver. Intensive Care Med 29:233–240PubMedGoogle Scholar
  8. 8.
    Frerichs I, Hinz J, Herrmann P, Weisser G, Hahn G, Dudykevych T, Quintel M, Hellige G (2002) Detection of local lung air content by electrical impedance tomography compared with electron beam CT. J Appl Physiol 93:660–666PubMedGoogle Scholar
  9. 9.
    Hinz J, Neumann P, Dudykevych T, Andersson LG, Wrigge H, Burchardi H, Hedenstierna G (2003) Regional ventilation by electrical impedance tomography: a comparison with ventilation scintigraphy in pigs. Chest 124:314–322PubMedCrossRefGoogle Scholar
  10. 10.
    Kunst PW, Vonk Noordegraaf A, Hoekstra OS, Postmus PE, de Vries PM (1998) Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning. Physiol Meas 19:481–490PubMedCrossRefGoogle Scholar
  11. 11.
    Victorino JA, Borges JB, Okamoto VN, Matos GFJ, Tucci MR, Caramez MPR, Tanaka H, Sipmann FS, Santos DCB, Barbas CSV, Carvalho CRR, Amato MBP (2004) Imbalances in regional lung ventilation. A validation study on electrical impedance tomography. Am J Respir Crit Care Med 169:791–800PubMedCrossRefGoogle Scholar
  12. 12.
    Caples M, Hubmayr RD (2003) Respiratory monitoring tools in the intensive care unit. Curr Opin Crit Care 9:230–235PubMedCrossRefGoogle Scholar
  13. 13.
    Frerichs I, Schiffmann H, Hahn G, Hellige G (2001) Non-invasive radiation-free monitoring of regional lung ventilation in critically ill infants. Intensive Care Med 27:1385–1394PubMedCrossRefGoogle Scholar
  14. 14.
    Wolf GK, Arnold JA (2005) Noninvasive assessment of lung volume: respiratory inductance plethysmography and electrical impedance tomography. Crit Care Med 33:S163–S169PubMedCrossRefGoogle Scholar
  15. 15.
    Frerichs I, Schiffmann H, Ohler R, Dudykevych T, Hahn G, Hinz J, Hellige G (2003) Distribution of lung ventilation in spontaneously breathing neonates lying in different body positions. Intensive Care Med 29:787–794PubMedCrossRefGoogle Scholar
  16. 16.
    Carlo WA, Beoglos A, Siner BS, Martin RJ (1989) Neck and body position effects on pulmonary mechanics in infants. Pediatrics 84:670–674PubMedGoogle Scholar
  17. 17.
    Paluszynska DA, Harris KA, Thach BT (2004) Influence of sleep position experience on ability of prone-sleeping infants to escape from asphyxiating microenvironments by changing head position. Pediatrics 114:1634–1639PubMedCrossRefGoogle Scholar
  18. 18.
    Brown BH (2003) Electrical impedance tomography (EIT): a review. J Med Eng Technol 27:97–108PubMedCrossRefGoogle Scholar
  19. 19.
    Frerichs I (2000) Electrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activities. Physiol Meas 21:R1–R21PubMedCrossRefGoogle Scholar
  20. 20.
    Hahn G, Thiel F, Dudykevych T, Frerichs I, Gersing E, Schröder T, Hartung C, Hellige G (2001) Quantitative evaluation of the performance of different electrical tomography devices. Biomed Tech (Berl) 46:91–95CrossRefGoogle Scholar
  21. 21.
    Hahn G, Dudykevych T, Frerichs I, Thiel F, Hellige G (2002) A high performance electrical impedance tomography (EIT) system for clinical evaluation studies and space application. In: Hutten H, Krösl P (eds) Proceedings of the 2nd European Medical & Biological Engineering Conference. Verlag der TU Graz, Graz, pp 110–111Google Scholar
  22. 22.
    Kühnel G, Hahn G, Frerichs I, Schröder T, Hellige G (1997) New methods for improving the image quality of functional electrical impedance tomography. Biomed Tech (Berl) 42 [Suppl]:470–471Google Scholar
  23. 23.
    Fewell J, Arrington R, Seibert J (1979) The effect of head position and angle of tracheal bifurcation on bronchus catheterization in the intubated neonate. Pediatrics 64:318–320PubMedGoogle Scholar
  24. 24.
    Woodrum D (1992) Respiratory muscles. In: Polin RA, Fox WW (eds) Fetal and neonatal physiology. Saunders, Philadelphia, pp 829–841Google Scholar
  25. 25.
    Rabbani KS, Kabir AM (1991) Studies on the effect of the third dimension on a two-dimensional electrical impedance tomography system. Physiol Meas 12:393–402CrossRefGoogle Scholar
  26. 26.
    Adams JA, Zabaleta IA, Sackner MA (1994) Comparison of supine and prone non-invasive measurements of breathing patterns in fullterm newborns. Pediatr Pulmonol 18:8–12PubMedCrossRefGoogle Scholar
  27. 27.
    Heimler R, Langlois J, Hodel DJ, Nelin LD, Sasidharan P (1992) Effect of positioning on the breathing pattern of preterm infants. Arch Dis Child 67:312–314PubMedCrossRefGoogle Scholar
  28. 28.
    Shen XM, Zhoa W, Huang DS, Lin FG, Wu SM (1996) Effect of positioning on pulmonary function of newborns: comparison of supine and prone position. Pediatr Pulmonol 21:167–170PubMedCrossRefGoogle Scholar
  29. 29.
    Rehan VK, Nakashima JM, Gutman A, Rubin LP, McCool FD (2000) Effects of the supine and prone position on diaphragm thickness in healthy term infants. Arch Dis Child 83:234–238PubMedCrossRefGoogle Scholar
  30. 30.
    Baird TM, Neuman MR (1991) Effect of infant position on breath amplitude measured by transthoracic impedance and strain gauges. Pediatr Pulmonol 10:52–56PubMedCrossRefGoogle Scholar
  31. 31.
    Alexander RT, Radisch D (2005) Sudden infant death syndrome risk factors with regards to sleep position, sleep surface, and co-sleeping. J Forensic Sci 50:147–151PubMedCrossRefGoogle Scholar
  32. 32.
    Wells D, Gillies D, Fitzgerald D (2005) Positioning for acute respiratory distress in hospitalised infants and children. Cochrane Database Syst Rev 2:CD003645Google Scholar
  33. 33.
    Malloy MH (2004) SIDS-a syndrome in search of a cause. N Engl J Med 2:957–959CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Sina Heinrich
    • 2
  • Holger Schiffmann
    • 3
  • Alexander Frerichs
    • 2
  • Adelbert Klockgether-Radke
    • 2
  • Inéz Frerichs
    • 1
    • 2
    Email author
  1. 1.Department of Anaesthesiology and Intensive Care MedicineUniversity of Schleswig-HolsteinKielGermany
  2. 2.Centre for Anaesthesiology, Emergency and Intensive Care MedicineUniversity of GöttingenGöttingenGermany
  3. 3.Centre for Child and Adolescent HealthUniversity of GöttingenGöttingenGermany

Personalised recommendations