Intensive Care Medicine

, 32:836 | Cite as

Amplitude-integrated EEG (aEEG) predicts outcome after cardiac arrest and induced hypothermia

Original

Abstract

Objective

To evaluate the use of continuous amplitude-integrated EEG (aEEG) as a prognostic tool for survival and neurological outcome in cardiac arrest patients treated with hypothermia.

Design

Prospective, observational study.

Setting

Multidisciplinary intensive care unit in a university hospital.

Intervention

Comatose survivors of cardiac arrest were treated with induced hypothermia for 24 h. An aEEG recording was initiated upon arrival at the ICU and continued until the patient regained consciousness or, if the patient remained in coma, no longer than 120 h. The aEEG recording was not available to the ICU physician, and the aEEG tracings were interpreted by a neurophysiologist with no knowledge of the patient's clinical status. Only clinically visible seizures were treated.

Measurements and results

Thirty-four consecutive hypothermia-treated cardiac arrest survivors were included. At normothermia (mean 37 h after cardiac arrest), the aEEG pattern was discriminative for outcome. All 20 patients with a continuous aEEG at this time regained consciousness, whereas 14 patients with pathological aEEG patterns (flat, suppression-burst or status epilepticus) did not regain consciousness and died in hospital. Patients were evaluated neurologically upon discharge from the ICU and after 6 months, using the Cerebral Performance Category (CPC) scale. Eighteen patients were alive with a good cerebral outcome (CPC 1--2) at 6-month follow-up.

Conclusion

A continuous aEEG pattern at the time of normothermia was discriminative for regaining consciousness. aEEG is an easily applied method in the ICU setting.

Keywords

Cardiac arrest Coma Hypothermia aEEG Outcome 

Notes

Acknowledgements

This study was supported by the Swedish Research Council, grant No. 84 (Ingmar Rosén). We would like to thank Bodil Persson, EEG technician, for excellent technical support. The assistance of Gisela Railo, occupational therapist, Dr Tobias Cronberg and Dr Håkan Widner at the Department of Neurology, Lund University Hospital is gratefully acknowledged.

References

  1. 1.
    Herlitz J, Bång A, Gunnarsson J, Engdahl J, Karlsson BW, Lindqvist J, Waagstein L (2003) Factors associated with survival to hospital discharge among patients hospitalised alive after out of hospital cardiac arrest: change in outcome over 20 years in the community of Göteborg, Sweden. Heart 89:25–30CrossRefPubMedGoogle Scholar
  2. 2.
    Zandbergen EGJ, de Haan RJ, Stoutenbeek CP, Koelman JHTM, Hijdra A (1998) Systematic review of early prediction of poor outcome in anoxic-ischaemic coma. Lancet 352:1808–1812CrossRefPubMedGoogle Scholar
  3. 3.
    Martens P, Raabe A, Johnsson P (1998) Serum S-100 and neuron-specific enolase for prediction of regaining consciousness after global cerebral ischemia. Stroke 29:2363–2366PubMedGoogle Scholar
  4. 4.
    Meynaar IA, Oudemans-van Straaten HM, Wetering J, Verlooy P, Slaats EH, Bosman RJ, Spoel JI, Zandstra DF (2003) Serum neuron-specific enolase predicts outcome in post-anoxic coma: a prospective cohort study. Intensive Care Med 29:189–195PubMedGoogle Scholar
  5. 5.
    Rosén H, Stilbrant Sunnerhagen K, Herlitz J, Blomstrand C, Rosengren L (2001) Serum levels of the brain-derived proteins S-100 and NSE predict long-term outcome after cardiac arrest. Resuscitation 49:183–191CrossRefPubMedGoogle Scholar
  6. 6.
    Binnie CD, Prior PF, Lloyd DSL, Scott DF, Margerison JH (1970) Electroencephalographic prediction of fatal anoxic brain damage after resuscitation from cardiac arrest. Br Med J 4:265–268PubMedGoogle Scholar
  7. 7.
    Jorgensen EO, Holm S (1998) The natural course of neurological recovery following cardiopulmonary resuscitation. Resuscitation 36:111–122CrossRefPubMedGoogle Scholar
  8. 8.
    Madl C, Kramer L, Domanovits H, Woolard RH, Gervais H, Gendo A, Eisenhuber E, Grimm G, Sterz F (2000) Improved outcome prediction in unconscious cardiac arrest survivors with sensory evoked potentials compared with clinical assessment. Crit Care Med 28:721–726CrossRefPubMedGoogle Scholar
  9. 9.
    Pfeifer R, Börner A, Krack A, Sigusch HH, Surber R, Figulla HR (2005) Outcome after cardiac arrest: predictive values and limitations of the neuroproteins neuron-specific enolase and protein S-100 and the Glasgow Coma Scale. Resuscitation 65:49–55CrossRefPubMedGoogle Scholar
  10. 10.
    Young GB, Doig G, Ragzzoni A (2005) Anoxic-ischemic encephalopathy: clinical and electrophysiologic associations with outcome. Neurocritical Care 2:159–164CrossRefPubMedGoogle Scholar
  11. 11.
    Edgren E, Hedstrand U, Kelsey S, Sutton-Tyrell K, Safar P (1994) Assessment of neurological prognosis in comatose survivors of cardiac arrest. BRCT I study group. Lancet 343:1055–1059CrossRefPubMedGoogle Scholar
  12. 12.
    Levy DE, Caronna JJ, Singer BH, Lapinski RH, Frydman H, Plum F (1985) Predicting outcome from hypoxic-ischemic coma. JAMA 253:1420–1426CrossRefPubMedGoogle Scholar
  13. 13.
    Booth CM, Boone RH, Tomlinson G, Detsky AS (2004) Is this patient dead, vegetative, or severely neurologically impaired? JAMA 291:870–879CrossRefPubMedGoogle Scholar
  14. 14.
    Maramattom BV, Wijdicks EFM (2005) Postresuscitation encephalopathy: current views, management and prognostication. The Neurologist 11:234–243CrossRefPubMedGoogle Scholar
  15. 15.
    Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346:557–563CrossRefPubMedGoogle Scholar
  16. 16.
    The hypothermia after cardiac arrest study group (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346:549–556CrossRefPubMedGoogle Scholar
  17. 17.
    Hossmann KA, Kleihues P (1973) Reversibility of ischemic brain damage. Arch Neurol 29:375–384PubMedGoogle Scholar
  18. 18.
    Rehncrona S, Rosén I, Smith ML (1985) Effect of different degrees of brain ischemia and tissue lactic acidosis on the short-term recovery of neurophysiologic and metabolic variables. Exp Neurol 87:458–473CrossRefPubMedGoogle Scholar
  19. 19.
    Rosén I, Smith ML, Rehncrona S (1984) Quantitative EEG and evoked potentials after experimental brain ischemia in the rat; correlation with cerebral metabolism and blood flow. Prog Brain Res 62:175–183PubMedCrossRefGoogle Scholar
  20. 20.
    Snyder BD, Hauser WA, Loewenson RB, Leppik IE, Ramirez-Lassepas M, Gumnit RJ (1980) Neurologic prognosis after cardiopulmonary arrest. III. Seizure activity. Neurology 30:1292–1297PubMedGoogle Scholar
  21. 21.
    Thorngren-Jerneck K, Hellström-Westas L, Ryding E, Rosén I (2003) Cerebral glucose metabolism and early EEG/aEEG in term newborn infants with hypoxic-ischemic encephalopathy. Pediatr Res 54:854–860CrossRefPubMedGoogle Scholar
  22. 22.
    Toet MC, Hellström-Westas L, Groenendaal F, Eken P, de Vries LS (1999) Amplitude integrated EEG 3 and 6 hours after birth in full term neonates with hypoxic ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 81:19–23Google Scholar
  23. 23.
    van Rooij LGM, Toet MC, Osredkar D, van Huffelen AC, Groenendaal F, de Vries LS (2005) Recovery of amplitude integrated electroencephalographic background patterns within 24 hours of perinatal asphyxia. Arch Dis Child Fetal Neonatal Ed 90:F245–F251CrossRefPubMedGoogle Scholar
  24. 24.
    Gluckman PD, Wyatt JS, Azzopardi D, Ballard R, Edwards AD, Ferriero DM, Polin RA, Robertson CM, Thoresen M, Whitelaw A, Gunn AJ, on behalf of the CoolCap study group (2005) Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 365:663–670PubMedGoogle Scholar
  25. 25.
    Bernard S, Buist M, Monteiro O, Smith K (2003) Induced hypothermia using large volume, ice-cold intravenous fluid in comatose survivors of out-of-hospital cardiac arrest: a preliminary report. Resuscitation 56:9–13CrossRefPubMedGoogle Scholar
  26. 26.
    Jennett B, Bond M (1975) Assessment of outcome after severe brain damage. Lancet i:480–484Google Scholar
  27. 27.
    Young GB (2000) The EEG in coma. J Clin Neurophysiol 17:473–485CrossRefPubMedGoogle Scholar
  28. 28.
    Stecker MM, Cheung AT, Pochettino A, Kent GP, Patterson T, Weiss SJ, Bavaria JE (2001) Deep hypothermic circulatory arrest: I. Effects of cooling on electroencephalogram and evoked potentials. Ann Thorac Surg 71:14–21CrossRefPubMedGoogle Scholar
  29. 29.
    Krumholz A, Stern BJ, Weiss HD (1988) Outcome from coma after cardiopulmonary resuscitation: relation to seizures and myoclonus. Neurology 38:401–405PubMedGoogle Scholar
  30. 30.
    Tiainen M, Roine RO, Pettilä V, Takkunen O (2003) Serum neuron-specific enolase and S-100B protein in cardiac arrest patients treated with hypothermia. Stroke 34:2881–2886CrossRefPubMedGoogle Scholar
  31. 31.
    Tiainen M, Kovala TT, Takkunen OS, Roine RO (2005) Somatosensory and brainstem auditory evoked potentials in cardiac arrest patients treated with hypothermia. Crit Care Med 33:1736–1740CrossRefPubMedGoogle Scholar
  32. 32.
    Hachimi-Idrissi S, Zizi M, Nguyen DN, Schiettecate J, Ebinger G, Michotte Y, Huyghens L (2005) The evolution of serum astroglial S-100B protein in patients with cardiac arrest treated with mild hypothermia. Resuscitation 64:187–192CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Anesthesia and Intensive CareLund University HospitalLundSweden
  2. 2.Department of Clinical NeurophysiologyLund University HospitalLundSweden

Personalised recommendations