Intensive Care Medicine

, Volume 32, Issue 7, pp 981–994 | Cite as

Applications of transcranial Doppler in the ICU: a review

Review

Abstract

Objective

Transcranial Doppler (TCD) ultrasonography is a technique that uses a hand-held Doppler transducer (placed on the surface of the cranial skin) to measure the velocity and pulsatility of blood flow within the intracranial and the extracranial arteries. This review critically evaluates the evidence for the use of TCD in the critical care population.

Discussion

TCD has been frequently employed for the clinical evaluation of cerebral vasospasm following subarachnoid haemorrhage (SAH). To a lesser degree, TCD has also been used to evaluate cerebral autoregulatory capacity, monitor cerebral circulation during cardiopulmonary bypass and carotid endarterectomies and to diagnose brain death. Technological advances such as M mode, colour Doppler and three-dimensional power Doppler ultrasonography have extended the scope of TCD to include other non-critical care applications including assessment of cerebral emboli, functional TCD and the management of sickle cell disease.

Conclusions

Despite publications suggesting concordance between TCD velocity measurements and cerebral blood flow there are few randomized controlled studies demonstrating an improved outcome with the use of TCD monitoring in neurocritical care. Newer developments in this technology include venous Doppler, functional Doppler and use of ultrasound contrast agents.

Keywords

Transcranial Doppler Subarachnoid haemorrhage Intracranial pressure Brain death Neurocritical care 

References

  1. 1.
    Reid J, Spencer MP (1972) Ultrasonic Doppler technique for imaging blood vessels. Science 176:1235–1236PubMedGoogle Scholar
  2. 2.
    Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57:769–774PubMedGoogle Scholar
  3. 3.
    Aaslid R (1986) The Doppler principle applied to measurement of blood flow velocities in cerebral arteries. In: Aaslid R (ed) The Doppler principle applied to measurement of blood flow velocities in cerebral arteries. Springer, Vienna, pp 22–38Google Scholar
  4. 4.
    Gosling RG, King DH (1974) Arterial assessment by Doppler-shift ultrasound. Proc R Soc Med 67:447–449PubMedGoogle Scholar
  5. 5.
    Summors AC, Gupta AK, Matta BF (1999) Dynamic cerebral autoregulation during sevoflurane anesthesia: a comparison with isoflurane. Anesth Analg 88:341–345PubMedGoogle Scholar
  6. 6.
    Moppett IK, Mahajan RP (2004) Transcranial Doppler ultrasonography in anaesthesia and intensive care. Br J Anaesth 93:710–724PubMedGoogle Scholar
  7. 7.
    Tegeler C, Ratanakorn D (1999) Physics and principles. In: Babikian V, Wechsler L (eds) Physics and principles. Butterworth-Heinemann, Woburn, pp 3–13Google Scholar
  8. 8.
    Tortoli P (1989) A tracking FFT processor for pulsed Doppler analysis beyond the Nyquist limit. IEEE Trans Biomed Eng 36:232–237PubMedGoogle Scholar
  9. 9.
    Santalucia P, Feldmann E (1999) The basic transcranial Doppler examination, technique and anatomy. In: Babikian V, Wechsler L (eds) The basic transcranial Doppler examination, technique and anatomy. Butterworth-Heinemann, Woburn, pp 13–33Google Scholar
  10. 10.
    Maeda H, Matsumoto M, Handa N, Hougaku H, Ogawa S, Itoh T, Tsukamoto Y, Kamada T (1993) Reactivity of cerebral blood flow to carbon dioxide in various types of ischemic cerebrovascular disease: evaluation by the transcranial Doppler method. Stroke 24:670–675PubMedGoogle Scholar
  11. 11.
    Tong D, Albers G (1999) Normal Values. In: Babikian V, Wechsler L (eds) Normal values. Butterworth-Heinemann, Woburn, pp 33–49Google Scholar
  12. 12.
    Nornes H, Grip A, Wikeby P (1979) Intraoperative evaluation of cerebral hemodynamics using directional Doppler technique. II. Saccular aneurysms. J Neurosurg 50:570–577PubMedGoogle Scholar
  13. 13.
    Nornes H, Grip A, Wikeby P (1979) Intraoperative evaluation of cerebral hemodynamics using directional Doppler technique. I. Arteriovenous malformations. J Neurosurg 50:145–151PubMedGoogle Scholar
  14. 14.
    Sloan MA, Burch CM, Wozniak MA, Rothman MI, Rigamonti D, Permutt T, Numaguchi Y (1994) Transcranial Doppler detection of vertebrobasilar vasospasm following subarachnoid hemorrhage. Stroke 25:2187–2197PubMedGoogle Scholar
  15. 15.
    Venkatesh B, Shen Q, Lipman J (2002) Continuous measurement of cerebral blood flow velocity using transcranial Doppler reveals significant moment-to-moment variability of data in healthy volunteers and in patients with subarachnoid hemorrhage. Crit Care Med 30:563–569PubMedGoogle Scholar
  16. 16.
    Alexandrov AV, Brodie DS, McLean A, Hamilton P, Murphy J, Burns PN (1997) Correlation of peak systolic velocity and angiographic measurement of carotid stenosis revisited. Stroke 28:339–342PubMedGoogle Scholar
  17. 17.
    Spencer MP, Reid J (1979) Quantitation of carotid stenosis with continuous-wave (C-W) Doppler ultrasound. Stroke 10:326–330PubMedGoogle Scholar
  18. 18.
    Lindegaard KF, Nornes H, Bakke SJ, Sorteberg W, Nakstad P (1988) Cerebral vasospasm after subarachnoid haemorrhage investigated by means of transcranial Doppler ultrasound. Acta Neurochir Suppl (Wien) 42:81–84Google Scholar
  19. 19.
    Ursino M, Giulioni M, Lodi CA (1998) Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study. J Neurosurg 89:255–266PubMedGoogle Scholar
  20. 20.
    Bellner J, Romner B, Reinstrup P, Kristiansson KA, Ryding E, Brandt L (2004) Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol 62:45–51PubMedGoogle Scholar
  21. 21.
    Westra SJ, Lazareff J, Curran JG, Sayre JW, Kawamoto H Jr (1998) Transcranial Doppler ultrasonography to evaluate need for cerebrospinal fluid drainage in hydrocephalic children. J Ultrasound Med 17:561–569PubMedGoogle Scholar
  22. 22.
    De Oliviera R, Machado H (2003) Transcranial color-coded Doppler ultrasonography for evaluation of children with hydrocephalus. Neurosurg Focus 15:1–7Google Scholar
  23. 23.
    Panerai RB (2003) The critical closing pressure of the cerebral circulation. Med Eng Phys 25:621–632PubMedGoogle Scholar
  24. 24.
    Brain Trauma Foundation (2000) The American Association of Neurological Surgeons. The Joint Section on Neurotrauma and Critical Care. Guidelines for cerebral perfusion pressure. J Neurotrauma 17:507–511Google Scholar
  25. 25.
    Aaslid R, Lundar T, Lindegaard KF, HN (1986) Estimation of cerebral perfusion pressure from arterial blood pressure and transcranial Doppler recordings. In: Miller J, Teasdale G, Rowan J, Galbraith SL, Mendelow A (eds) Estimation of cerebral perfusion pressure from arterial blood pressure and transcranial Doppler recordings. Springer, Berlin Heidelberg New York, pp 226–229Google Scholar
  26. 26.
    Czosnyka M, Matta BF, Smielewski P, Kirkpatrick PJ, Pickard JD (1998) Cerebral perfusion pressure in head-injured patients: a noninvasive assessment using transcranial Doppler ultrasonography. J Neurosurg 88:802–808PubMedGoogle Scholar
  27. 27.
    Schmidt EA, Czosnyka M, Gooskens I, Piechnik SK, Matta BF, Whitfield PC, Pickard JD (2001) Preliminary experience of the estimation of cerebral perfusion pressure using transcranial Doppler ultrasonography. J Neurol Neurosurg Psychiatry 70:198–204PubMedGoogle Scholar
  28. 28.
    Edouard AR, Vanhille E, Le Moigno S, Benhamou D, Mazoit JX (2005) Non-invasive assessment of cerebral perfusion pressure in brain injured patients with moderate intracranial hypertension. Br J Anaesth 94:216–221PubMedGoogle Scholar
  29. 29.
    Weyland A, Buhre W, Grund S, Ludwig H, Kazmaier S, Weyland W, Sonntag H (2000) Cerebrovascular tone rather than intracranial pressure determines the effective downstream pressure of the cerebral circulation in the absence of intracranial hypertension. J Neurosurg Anesthesiol 12:210–216PubMedGoogle Scholar
  30. 30.
    Weyland A, Stephan H, Kazmaier S, Weyland W, Schorn B, Grune F, Sonntag H (1994) Flow velocity measurements as an index of cerebral blood flow. Validity of transcranial Doppler sonographic monitoring during cardiac surgery. Anesthesiology 81:1401–1410PubMedGoogle Scholar
  31. 31.
    De Georgia MA, Deogaonkar A (2005) Multimodal monitoring in the neurological intensive care unit. Neurologist 11:45–54PubMedGoogle Scholar
  32. 32.
    Brauer P, Kochs E, Werner C, Bloom M, Policare R, Pentheny S, Yonas H, Kofke WA, Schulte am Esch J (1998) Correlation of transcranial Doppler sonography mean flow velocity with cerebral blood flow in patients with intracranial pathology. J Neurosurg Anesthesiol 10:80–85PubMedGoogle Scholar
  33. 33.
    Minhas PS, Menon DK, Smielewski P, Czosnyka M, Kirkpatrick PJ, Clark JC, Pickard JD (2003) Positron emission tomographic cerebral perfusion disturbances and transcranial Doppler findings among patients with neurological deterioration after subarachnoid hemorrhage. Neurosurgery 52:1017–1022PubMedGoogle Scholar
  34. 34.
    Aaslid R, Huber P, Nornes H (1984) Evaluation of cerebrovascular spasm with transcranial Doppler ultrasound. J Neurosurg 60:37–41PubMedGoogle Scholar
  35. 35.
    Aaslid R, Huber P, Nornes H (1986) A transcranial Doppler method in the evaluation of cerebrovascular spasm. Neuroradiology 28:11–16PubMedGoogle Scholar
  36. 36.
    Seiler R, Grolimund P, Huber P (1986) Transcranial Doppler sonography. An alternative to angiography in the evaluation of vasospasm after subarachnoid hemorrhage. Acta Radiol Suppl 369:99–102PubMedGoogle Scholar
  37. 37.
    Compton JS, Redmond S, Symon L (1987) Cerebral blood velocity in subarachnoid haemorrhage: a transcranial Doppler study. J Neurol Neurosurg Psychiatry 50:1499–1503PubMedGoogle Scholar
  38. 38.
    Mascia L, Fedorko L, terBrugge K, Filippini C, Pizzio M, Ranieri VM, Wallace MC (2003) The accuracy of transcranial Doppler to detect vasospasm in patients with aneurysmal subarachnoid hemorrhage. Intensive Care Med 29:1088–1094PubMedGoogle Scholar
  39. 39.
    Suarez JI, Qureshi AI, Yahia AB, Parekh PD, Tamargo RJ, Williams MA, Ulatowski JA, Hanley DF, Razumovsky AY (2002) Symptomatic vasospasm diagnosis after subarachnoid hemorrhage: evaluation of transcranial Doppler ultrasound and cerebral angiography as related to compromised vascular distribution. Crit Care Med 30:1348–1355PubMedGoogle Scholar
  40. 40.
    Proust F, Debono B, Gerardin E, Hannequin D, Derrey S, Langlois O, Weber J, Freger P (2002) Angiographic cerebral vasospasm and delayed ischemic deficit on anterior part of the circle of Willis. Usefulness of transcranial Doppler. Neurochirurgie 48:489–499PubMedGoogle Scholar
  41. 41.
    Jarus-Dziedzic K, Juniewicz H, Wronski J, Zub WL, Kasper E, Gowacki M, Mierzwa J (2002) The relation between cerebral blood flow velocities as measured by TCD and the incidence of delayed ischemic deficits. A prospective study after subarachnoid hemorrhage. Neurol Res 24:582–592PubMedGoogle Scholar
  42. 42.
    Proust F, Callonec F, Clavier E, Lestrat JP, Hannequin D, Thiebot J, Freger P (1999) Usefulness of transcranial color-coded sonography in the diagnosis of cerebral vasospasm. Stroke 30:1091–1098PubMedGoogle Scholar
  43. 43.
    Wozniak MA, Sloan MA, Rothman MI, Burch CM, Rigamonti D, Permutt T, Numaguchi Y (1996) Detection of vasospasm by transcranial Doppler sonography. The challenges of the anterior and posterior cerebral arteries. J Neuroimaging 6:87–93PubMedGoogle Scholar
  44. 44.
    Burch CM, Wozniak MA, Sloan MA, Rothman MI, Rigamonti D, Permutt T, Numaguchi Y (1996) Detection of intracranial internal carotid artery and middle cerebral artery vasospasm following subarachnoid hemorrhage. J Neuroimaging 6:8–15PubMedGoogle Scholar
  45. 45.
    Giller CA, Purdy P, Giller A, Batjer HH, Kopitnik T (1995) Elevated transcranial Doppler ultrasound velocities following therapeutic arterial dilation. Stroke 26:123–127PubMedGoogle Scholar
  46. 46.
    Creissard P, Proust F, Langlois O (1995) Vasospasm diagnosis: theoretical and real transcranial Doppler sensitivity. Acta Neurochir (Wien) 136:181–185Google Scholar
  47. 47.
    Sander D, Klingelhofer J (1993) Cerebral vasospasm following post-traumatic subarachnoid hemorrhage evaluated by transcranial Doppler ultrasonography. J Neurol Sci 119:1–7PubMedGoogle Scholar
  48. 48.
    Lennihan L, Petty GW, Fink ME, Solomon RA, Mohr JP (1993) Transcranial Doppler detection of anterior cerebral artery vasospasm. J Neurol Neurosurg Psychiatry 56:906–909PubMedGoogle Scholar
  49. 49.
    Sloan MA, Haley EC Jr, Kassell NF, Henry ML, Stewart SR, Beskin RR, Sevilla EA, Torner JC (1989) Sensitivity and specificity of transcranial Doppler ultrasonography in the diagnosis of vasospasm following subarachnoid hemorrhage. Neurology 39:1514–1518PubMedGoogle Scholar
  50. 50.
    Vora YY, Suarez-Almazor M, Steinke DE, Martin ML, Findlay JM (1999) Role of transcranial Doppler monitoring in the diagnosis of cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery 44:1237–1247PubMedGoogle Scholar
  51. 51.
    Lysakowski C, Walder B, Costanza MC, Tramer MR (2001) Transcranial Doppler versus angiography in patients with vasospasm due to a ruptured cerebral aneurysm: A systematic review. Stroke 32:2292–2298PubMedGoogle Scholar
  52. 52.
    Laumer R, Steinmeier R, Gonner F, Vogtmann T, Priem R, Fahlbusch R (1993) Cerebral hemodynamics in subarachnoid hemorrhage evaluated by transcranial Doppler sonography. Part 1. Reliability of flow velocities in clinical management. Neurosurgery 33:1–8PubMedGoogle Scholar
  53. 53.
    Sekhar LN, Wechsler LR, Yonas H, Luyckx K, Obrist W (1988) Value of transcranial Doppler examination in the diagnosis of cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery 22:813–821PubMedGoogle Scholar
  54. 54.
    Lam JM, Smielewski P, Czosnyka M, Pickard JD, Kirkpatrick PJ (2000) Predicting delayed ischemic deficits after aneurysmal subarachnoid hemorrhage using a transient hyperemic response test of cerebral autoregulation. Neurosurgery 47:819–825PubMedGoogle Scholar
  55. 55.
    Grosset DG, Straiton J, McDonald I, Cockburn M, Bullock R (1993) Use of transcranial Doppler sonography to predict development of a delayed ischemic deficit after subarachnoid hemorrhage. J Neurosurg 78:183–187PubMedCrossRefGoogle Scholar
  56. 56.
    Grosset DG, McDonald I, Cockburn M, Straiton J, Bullock RR (1994) Prediction of delayed neurological deficit after subarachnoid haemorrhage: a CT blood load and Doppler velocity approach. Neuroradiology 36:418–421PubMedGoogle Scholar
  57. 57.
    Klingelhofer J, Sander D, Hakk K, Schwarze J, Dressnandt J, Bischoff C (1996) Relationships between delayed ischemic dysfunctions and intracranial hemodynamics following subarachnoid hemorrhage. J Neurol Sci 143:72–78PubMedGoogle Scholar
  58. 58.
    Mizuno M, Nakajima S, Sampei T, Nishimura H, Hadeishi H, Suzuki A, Yasui N, Nathal-Vera E (1994) Serial transcranial Doppler flow velocity and cerebral blood flow measurements for evaluation of cerebral vasospasm after subarachnoid hemorrhage. Neurol Med Chir (Tokyo) 34:164–171Google Scholar
  59. 59.
    Soustiel JF, Bruk B, Shik B, Hadani M, Feinsod M (1998) Transcranial Doppler in vertebrobasilar vasospasm after subarachnoid hemorrhage. Neurosurgery 43:282–291PubMedGoogle Scholar
  60. 60.
    Sviri GE, Lewis DH, Correa R, Britz GW, Douville CM, Newell DW (2004) Basilar artery vasospasm and delayed posterior circulation ischemia after aneurysmal subarachnoid hemorrhage. Stroke 35:1867–1872PubMedGoogle Scholar
  61. 61.
    Soustiel JF, Shik V, Shreiber R, Tavor Y, Goldsher D (2002) Basilar vasospasm diagnosis: investigation of a modified “Lindegaard Index” based on imaging studies and blood velocity measurements of the basilar artery. Stroke 33:72–77PubMedGoogle Scholar
  62. 62.
    Newell DW, Grady MS, Eskridge JM, Winn HR (1990) Distribution of angiographic vasospasm after subarachnoid hemorrhage: implications for diagnosis by transcranial Doppler ultrasonography. Neurosurgery 27:574–577PubMedGoogle Scholar
  63. 63.
    Meixensberger J, Hamelbeck B, Dings J, Ernemann U, Roosen K (1996) Critical increase of blood flow velocities after subarachnoid haemorrhage: vasospasm versus hyperaemia. Zentralbl Neurochir 57:70–75PubMedGoogle Scholar
  64. 64.
    Shen Q, Stuart J, Venkatesh B, Wallace J, Lipman J (1999) Inter observer variability of the transcranial Doppler ultrasound technique: impact of lack of practice on the accuracy of measurement. J Clin Monit Comput 15:179–184PubMedGoogle Scholar
  65. 65.
    Rothoerl RD, Woertgen C, Brawanski A (2004) Hyperemia following aneurysmal subarachnoid hemorrhage: incidence, diagnosis, clinical features, and outcome. Intensive Care Med 30:1298–1302PubMedGoogle Scholar
  66. 66.
    Clyde BL, Resnick DK, Yonas H, Smith HA, Kaufmann AM (1996) The relationship of blood velocity as measured by transcranial doppler ultrasonography to cerebral blood flow as determined by stable xenon computed tomographic studies after aneurysmal subarachnoid hemorrhage. Neurosurgery 38:896–904PubMedGoogle Scholar
  67. 67.
    Rajendran JG, Lewis DH, Newell DW, Winn HR (2001) Brain SPECT used to evaluate vasospasm after subarachnoid hemorrhage: correlation with angiography and transcranial Doppler. Clin Nucl Med 26:125–130PubMedGoogle Scholar
  68. 68.
    Steiger HJ, Aaslid R, Stooss R, Seiler RW (1994) Transcranial Doppler monitoring in head injury: relations between type of injury, flow velocities, vasoreactivity, and outcome. Neurosurgery 34:79–85PubMedGoogle Scholar
  69. 69.
    Muttaqin Z, Uozumi T, Kuwabara S, Arita K, Kurisu K, Ohba S, Kohno H, Ogasawara H, Ohtani M, Mikami T (1993) Hyperaemia prior to acute cerebral swelling in severe head injuries: the role of transcranial Doppler monitoring. Acta Neurochir (Wien) 123:76–81Google Scholar
  70. 70.
    Zurynski YA, Dorsch NW, Fearnside MR (1995) Incidence and effects of increased cerebral blood flow velocity after severe head injury: a transcranial Doppler ultrasound study II. Effect of vasospasm and hyperemia on outcome. J Neurol Sci 134:41–46PubMedGoogle Scholar
  71. 71.
    Santbrink H van, Schouten JW, Steyerberg EW, Avezaat CJ, Maas AI (2002) Serial transcranial Doppler measurements in traumatic brain injury with special focus on the early posttraumatic period. Acta Neurochir (Wien) 144:1141–1149Google Scholar
  72. 72.
    Chan KH, Miller JD, Dearden NM (1992) Intracranial blood flow velocity after head injury: relationship to severity of injury, time, neurological status and outcome. J Neurol Neurosurg Psychiatry 55:787–791PubMedCrossRefGoogle Scholar
  73. 73.
    Klingelhofer J, Conrad B, Benecke R, Sander D (1987) Intracranial flow patterns at increasing intracranial pressure. Klin Wochenschr 65:542–545PubMedGoogle Scholar
  74. 74.
    Klingelhofer J, Conrad B, Benecke R, Sander D, Markakis E (1988) Evaluation of intracranial pressure from transcranial Doppler studies in cerebral disease. J Neurol 235:159–162PubMedGoogle Scholar
  75. 75.
    Goraj B, Rifkinson-Mann S, Leslie DR, Lansen TA, Kasoff SS, Tenner MS (1994) Correlation of intracranial pressure and transcranial Doppler resistive index after head trauma. AJNR Am J Neuroradiol 15:1333–1339PubMedGoogle Scholar
  76. 76.
    Compton JS, Teddy PJ (1987) Cerebral arterial vasospasm following severe head injury: a transcranial Doppler study. Br J Neurosurg 1:435–439PubMedGoogle Scholar
  77. 77.
    Weber M, Grolimund P, Seiler RW (1990) Evaluation of posttraumatic cerebral blood flow velocities by transcranial Doppler ultrasonography. Neurosurgery 27:106–112PubMedGoogle Scholar
  78. 78.
    Martin NA, Doberstein C, Zane C, Caron MJ, Thomas K, Becker DP (1992) Posttraumatic cerebral arterial spasm: transcranial Doppler ultrasound, cerebral blood flow, and angiographic findings. J Neurosurg 77:575–583PubMedCrossRefGoogle Scholar
  79. 79.
    Soustiel JF, Shik V, Feinsod M (2002) Basilar vasospasm following spontaneous and traumatic subarachnoid haemorrhage: clinical implications. Acta Neurochir (Wien) 144:137–144Google Scholar
  80. 80.
    Hadani M, Bruk B, Ram Z, Knoller N, Bass A (1997) Transiently increased basilar artery flow velocity following severe head injury: a time course transcranial Doppler study. J Neurotrauma 14:629–636PubMedCrossRefGoogle Scholar
  81. 81.
    Bazzocchi M, Quaia E, Zuiani C, Moroldo M (1998) Transcranial Doppler: state of the art. Eur J Radiol 27 [Suppl 2]:S141–S148Google Scholar
  82. 82.
    Bakshi A, Mahapatra AK (1998) Basilar artery vasospasm after severe head injury: a preliminary transcranial Doppler ultrasound study. Natl Med J India 11:220–221PubMedGoogle Scholar
  83. 83.
    Panerai RB (1998) Assessment of cerebral pressure autoregulation in humans—a review of measurement methods. Physiol Meas 19:305–338PubMedGoogle Scholar
  84. 84.
    Paulson OB, Strandgaard S, Edvinsson L (1990) Cerebral autoregulation. Cerebrovasc Brain Metab Rev 2:161–192PubMedGoogle Scholar
  85. 85.
    Stocchetti N, Maas AI, Chieregato A, van der Plas AA (2005) Hyperventilation in head injury: a review. Chest 127:1812–1827PubMedGoogle Scholar
  86. 86.
    Maeda H, Matsumoto M, Handa N, Hougaku H, Ogawa S, Itoh T, Tsukamoto Y, Kamada T (1994) Reactivity of cerebral blood flow to carbon dioxide in hypertensive patients: evaluation by the transcranial Doppler method. J Hypertens 12:191–197PubMedGoogle Scholar
  87. 87.
    Clivati A, Ciofetti M, Cavestri R, Longhini E (1992) Cerebral vascular responsiveness in chronic hypercapnia. Chest 102:135–138PubMedGoogle Scholar
  88. 88.
    Diehl RR (2002) Cerebral autoregulation studies in clinical practice. Eur J Ultrasound 16:31–36PubMedGoogle Scholar
  89. 89.
    Aaslid R, Lindegaard KF, Sorteberg W, Nornes H (1989) Cerebral autoregulation dynamics in humans. Stroke 20:45–52PubMedGoogle Scholar
  90. 90.
    Tiecks FP, Douville C, Byrd S, Lam AM, Newell DW (1996) Evaluation of impaired cerebral autoregulation by the Valsalva maneuver. Stroke 27:1177–1182PubMedGoogle Scholar
  91. 91.
    Giller CA (1991) A bedside test for cerebral autoregulation using transcranial Doppler ultrasound. Acta Neurochir (Wien) 108:7–14Google Scholar
  92. 92.
    Vavilala MS, Lee LA, Boddu K, Visco E, Newell DW, Zimmerman JJ, Lam AM (2004) Cerebral autoregulation in pediatric traumatic brain injury. Pediatr Crit Care Med 5:257–263PubMedGoogle Scholar
  93. 93.
    Soehle M, Czosnyka M, Pickard JD, Kirkpatrick PJ (2004) Continuous assessment of cerebral autoregulation in subarachnoid hemorrhage. Anesth Analg 98:1133–1139PubMedGoogle Scholar
  94. 94.
    Schmidt EA, Czosnyka M, Smielewski P, Piechnik SK, Pickard JD (2002) Asymmetry of cerebral autoregulation following head injury. Acta Neurochir Suppl 81:133–134PubMedGoogle Scholar
  95. 95.
    Schmidt EA, Czosnyka M, Steiner LA, Balestreri M, Smielewski P, Piechnik SK, Matta BF, Pickard JD (2003) Asymmetry of pressure autoregulation after traumatic brain injury. J Neurosurg 99:991–998PubMedGoogle Scholar
  96. 96.
    Waran V, Menon DK (2000) Multimodality monitoring and the diagnosis of traumatic caroticocavernous fistula following head injury. Br J Neurosurg 14:469–471PubMedGoogle Scholar
  97. 97.
    Nortje J, Menon DK (2004) Traumatic brain injury: physiology, mechanisms, and outcome. Curr Opin Neurol 17:711–718PubMedGoogle Scholar
  98. 98.
    Ducrocq X, Hassler W, Moritake K, Newell DW, von Reutern GM, Shiogai T, Smith RR (1998) Consensus opinion on diagnosis of cerebral circulatory arrest using Doppler-sonography: Task Force Group on cerebral death of the Neurosonology Research Group of the World Federation of Neurology. J Neurol Sci 159:145–150PubMedGoogle Scholar
  99. 99.
    Ducrocq X, Braun M, Debouverie M, Junges C, Hummer M, Vespignani H (1998) Brain death and transcranial Doppler: experience in 130 cases of brain dead patients. J Neurol Sci 160:41–46PubMedGoogle Scholar
  100. 100.
    Feri M, Ralli L, Felici M, Vanni D, Capria V (1994) Transcranial Doppler and brain death diagnosis. Crit Care Med 22:1120–1126PubMedGoogle Scholar
  101. 101.
    Azevedo E, Teixeira J, Neves JC, Vaz R (2000) Transcranial Doppler and brain death. Transplant Proc 32:2579–2581PubMedGoogle Scholar
  102. 102.
    Hassler W, Steinmetz H, Gawlowski J (1988) Transcranial Doppler ultrasonography in raised intracranial pressure and in intracranial circulatory arrest. J Neurosurg 68:745–751PubMedGoogle Scholar
  103. 103.
    Karaali K, Cevikol C, Senol U, Arici G, Kabaalioglu A, Ramazanoglu A, Bircan O (2000) Orbital Doppler sonography findings in cases of brain death. AJNR Am J Neuroradiol 21:945–947PubMedGoogle Scholar
  104. 104.
    Hadani M, Bruk B, Ram Z, Knoller N, Spiegelmann R, Segal E (1999) Application of transcranial doppler ultrasonography for the diagnosis of brain death. Intensive Care Med 25:822–828PubMedGoogle Scholar
  105. 105.
    Haupt WF, Rudolf J (1999) European brain death codes: a comparison of national guidelines. J Neurol 246:432–437PubMedGoogle Scholar
  106. 106.
    Stolz E, Kaps M, Kern A, Babacan SS, Dorndorf W (1999) Transcranial color-coded duplex sonography of intracranial veins and sinuses in adults. Reference data from 130 volunteers. Stroke 30:1070–1075PubMedGoogle Scholar
  107. 107.
    Schoser BG, Riemenschneider N, Hansen HC (1999) The impact of raised intracranial pressure on cerebral venous hemodynamics: a prospective venous transcranial Doppler ultrasonography study. J Neurosurg 91:744–749PubMedCrossRefGoogle Scholar
  108. 108.
    Mursch K, Wachter A, Radke K, Buhre W, Al-Sufi S, Munzel U, Behnke-Mursch J, Kolenda H (2001) Blood flow velocities in the basal vein after subarachnoid haemorrhage. A prospective study using transcranial duplex sonography. Acta Neurochir (Wien) 143:793–799Google Scholar
  109. 109.
    Perren F, Horn P, Kern R, Bueltmann E, Hennerici M, Meairs S (2004) A rapid noninvasive method to visualize ruptured aneurysms in the emergency room: three-dimensional power Doppler imaging. J Neurosurg 100:619–622PubMedGoogle Scholar
  110. 110.
    Zunker P, Wilms H, Brossmann J, Georgiadis D, Weber S, Deuschl G (2002) Echo contrast-enhanced transcranial ultrasound: frequency of use, diagnostic benefit, and validity of results compared with MRA. Stroke 33:2600–2603PubMedGoogle Scholar
  111. 111.
    Kidwell CS, Martin NA, Saver JL (2000) A new pocket-sized transcranial ultrasound device (NeuroDop): comparison with standard TCD. J Neuroimaging 10:91–95PubMedGoogle Scholar
  112. 112.
    Larsen FS, Ejlersen E, Strauss G, Rasmussen A, Kirkegaard P, Hansen BA, Secher N (1999) Cerebrovascular metabolic autoregulation is impaired during liver transplantation. Transplantation 68:1472–1476PubMedGoogle Scholar
  113. 113.
    Deppe M, Ringelstein EB, Knecht S (2004) The investigation of functional brain lateralization by transcranial Doppler sonography. Neuroimage 21:1124–1146PubMedGoogle Scholar
  114. 114.
    Koch S, Pohl P, Cobet U, Rainov NG (2000) Ultrasound enhancement of liposome-mediated cell transfection is caused by cavitation effects. Ultrasound Med Biol 26:897–903PubMedGoogle Scholar
  115. 115.
    Sloan MA, Alexandrov AV, Tegeler CH, Spencer MP, Caplan LR, Feldmann E, Wechsler LR, Newell DW, Gomez CR, Babikian VL, Lefkowitz D, Goldman RS, Armon C, Hsu CY, Goodin DS (2004) Assessment: transcranial Doppler ultrasonography: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 62:1468–1481PubMedGoogle Scholar
  116. 116.
    Moppett IK, Mahajan RP (2004) Transcranial Doppler ultrasonography in anaesthesia and intensive care. Br J Anaesth 93:710–724PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of AnaesthesiaQueen Elizabeth II HospitalCoopers PlainsAustralia
  2. 2.Department of Critical Care MedicineUniversity of Queensland, Princess Alexandra and Wesley HospitalsWoollongabbaAustralia

Personalised recommendations