Intensive Care Medicine

, Volume 31, Issue 10, pp 1370–1378 | Cite as

Inspiratory vs. expiratory pressure-volume curves to set end-expiratory pressure in acute lung injury

  • Guillermo M. AlbaicetaEmail author
  • Luis H. Luyando
  • Diego Parra
  • Rafael Menendez
  • Juan Calvo
  • Paula Rodríguez Pedreira
  • Francisco Taboada



To study the effects of two levels of positive end-expiratory pressure (PEEP), 2 cmH2O above the lower inflection point of the inspiratory limb and equal to the point of maximum curvature on the expiratory limb of the pressure-volume curve, in gas exchange, respiratory mechanics, and lung aeration.

Design and setting

Prospective clinical study in the intensive care unit and computed tomography ward of a university hospital.


Eight patients with early acute lung injury.


Both limbs of the static pressure-volume curve were traced and inflection points calculated using a sigmoid model. During ventilation with a tidal volume of 6 ml/kg we sequentially applied a PEEP 2 cmH2O above the inspiratory lower inflection point (15.5±3.1 cmH2O) and a PEEP equal to the expiratory point of maximum curvature (23.5±4.1 cmH2O).

Measurements and results

Arterial blood gases, respiratory system compliance and resistance and changes in lung aeration (measured on three computed tomography slices during end-expiratory and end-inspiratory pauses) were measured at each PEEP level. PEEP according to the expiratory point of maximum curvature was related to an improvement in oxygenation, increase in normally aerated, decrease in nonaerated lung volumes, and greater alveolar stability. There was also an increase in PaCO2, airway pressures, and hyperaerated lung volume.


High PEEP levels according to the point of maximum curvature of the deflation limb of the pressure-volume curve have both benefits and drawbacks.


Acute lung injury Positive end-expiratory pressure Pressure-volume curves Computed tomography Mechanical ventilation 



The authors thank all the nursing and technician personnel in the Intensive Care Unit and CT Ward of the Hospital Universitario Central de Asturias for their help. We also thank Ana Villagrá for her suggestions about the manuscript.


  1. 1.
    Brower RG, Rubenfeld GD (2003) Lung-protective ventilation strategies in acute lung injury. Crit Care Med 31:S312–S316CrossRefPubMedGoogle Scholar
  2. 2.
    Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323PubMedGoogle Scholar
  3. 3.
    Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354CrossRefPubMedGoogle Scholar
  4. 4.
    Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308CrossRefPubMedGoogle Scholar
  5. 5.
    Putensen C, Baum M, Hormann C (1993) Selecting ventilator settings according to variables derived from the quasi-static pressure/volume relationship in patients with acute lung injury. Anesth Analg 77:436–447PubMedGoogle Scholar
  6. 6.
    Hickling KG (2001) Best compliance during a decremental, but not incremental, positive end- expiratory pressure trial is related to open-lung positive end- expiratory pressure: a mathematical model of acute respiratory distress syndrome lungs. Am J Respir Crit Care Med 163:69–78PubMedGoogle Scholar
  7. 7.
    Venegas JG, Harris RS, Simon BA (1998) A comprehensive equation for the pulmonary pressure-volume curve. J Appl Physiol 84:389–395PubMedGoogle Scholar
  8. 8.
    Albaiceta GM, Taboada F, Parra D, Luyando LH, Calvo J, Menendez R, Otero J (2004) Tomographic study of the inflection points of the pressure-volume curve in acute lung injury. Am J Respir Crit Care Med 170:1066–1072CrossRefPubMedGoogle Scholar
  9. 9.
    Goddon S, Fujino Y, Hromi JM, Kacmarek RM (2001) Optimal mean airway pressure during high-frequency oscillation: predicted by the pressure-volume curve. Anesthesiology 94:862–969CrossRefPubMedGoogle Scholar
  10. 10.
    Albaiceta GM, Luyando LH, Parra D, Menendez R, Calvo J, Taboada F (2003) Inspiratory vs expiratory limb of the pressure-volume curve for the positive end-expiratory pressure setting in acute lung injury (abstract). Crit Care 8:25CrossRefPubMedGoogle Scholar
  11. 11.
    Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, LeGall JR, Morris A, Spragg R (1994) Report of the American-European consensus conference on ARDS: definitions, mechanisms, relevant outcomes and clinical trial coordination. The Consensus Committee. Intensive Care Med 20:225–232CrossRefPubMedGoogle Scholar
  12. 12.
    D’Angelo E, Calderini E, Tavola M, Bono D, Milic-Emili J (1992) Effect of PEEP on respiratory mechanics in anesthetized paralyzed humans. J Appl Physiol 73:1736–1742PubMedGoogle Scholar
  13. 13.
    Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136:730–736PubMedGoogle Scholar
  14. 14.
    Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A (1998) Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Crit Care Med 158:3–11PubMedGoogle Scholar
  15. 15.
    Vieira SR, Nieszkowska A, Lu Q, Elman M, Sartorius A, Rouby JJ (2005) Low spatial resolution computed tomography underestimates lung overinflation resulting from positive pressure ventilation. Crit Care Med 33:741–749CrossRefPubMedGoogle Scholar
  16. 16.
    Mehta S, Stewart TE, MacDonald R, Hallett D, Banayan D, Lapinsky S, Slutsky A (2003) Temporal change, reproducibility, and interobserver variability in pressure-volume curves in adults with acute lung injury and acute respiratory distress syndrome. Crit Care Med 31:2118–2125CrossRefPubMedGoogle Scholar
  17. 17.
    Nishida T, Suchodolski K, Schettino GP, Sedeek K, Takeuch M, Kacmarek RM (2004) Peak volume history and peak pressure-volume curve pressures independently affect the shape of the pressure-volume curve of the respiratory system. Crit Care Med 32:1358–1364CrossRefPubMedGoogle Scholar
  18. 18.
    Pereira C, Bohe J, Rosselli S, Combourieu E, Pommier C, Perdrix JP, Richard JC, Badet M, Gaillard S, Philit F, Guerin C (2003) Sigmoidal equation for lung and chest wall volume-pressure curves in acute respiratory failure. J Appl Physiol 95:2064–2071PubMedGoogle Scholar
  19. 19.
    Rouby JJ, Puybasset L, Nieszkowska A, Lu Q (2003) Acute respiratory distress syndrome: lessons from computed tomography of the whole lung. Crit Care Med 31:S285–S295CrossRefPubMedGoogle Scholar
  20. 20.
    Lu Q, Malbouisson LM, Mourgeon E, Goldstein I, Coriat P, Rouby JJ (2001) Assessment of PEEP-induced reopening of collapsed lung regions in acute lung injury: are one or three CT sections representative of the entire lung? Intensive Care Med 27:1504–1510CrossRefPubMedGoogle Scholar
  21. 21.
    Pelosi P, Goldner M, McKibben A, Adams A, Eccher G, Caironi P, Losappio S, Gattinoni L, Marini JJ (2001) Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med 164:122–130PubMedGoogle Scholar
  22. 22.
    Crotti S, Mascheroni D, Caironi P, Pelosi P, Ronzoni G, Mondino M, Marini JJ, Gattinoni L (2001) Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med 164:131–140PubMedGoogle Scholar
  23. 23.
    Rimensberger PC, Cox PN, Frndova H, Bryan AC (1999) The open lung during small tidal volume ventilation: concepts of recruitment and “optimal” positive end-expiratory pressure. Crit Care Med 27:1946–1952CrossRefPubMedGoogle Scholar
  24. 24.
    Jonson B, Richard JC, Straus C, Mancebo J, Lemaire F, Brochard L (1999) Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 159:1172–1178PubMedGoogle Scholar
  25. 25.
    Maggiore SM, Jonson B, Richard JC, Jaber S, Lemaire F, Brochard L (2001) Alveolar Derecruitment at Decremental Positive End-Expiratory Pressure Levels in Acute Lung Injury. Comparison with the lower inflection point, oxygenation, and compliance. Am J Respir Crit Care Med 164:795–801PubMedGoogle Scholar
  26. 26.
    Halter JM, Steinberg JM, Schiller HJ, DaSilva M, Gatto LA, Landas S, Nieman GF (2003) Positive end-expiratory pressure after a recruitment maneuver prevents both alveolar collapse and recruitment/derecruitment. Am J Respir Crit Care Med 167:1620–1626CrossRefPubMedGoogle Scholar
  27. 27.
    Steinberg JM, Schiller HJ, Halter JM, Gatto LA, Lee HM, Pavone LA, Nieman GF (2004) Alveolar instability causes early ventilator-induced lung injury independent of neutrophils. Am J Respir Crit Care Med 169:57–63CrossRefPubMedGoogle Scholar
  28. 28.
    Malbouisson LM, Muller JC, Constantin JM, Lu Q, Puybasset L, Rouby JJ (2001) Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 163:1444–1450PubMedGoogle Scholar
  29. 29.
    Bugedo G, Bruhn A, Hernandez G, Rojas G, Varela C, Tapia JC, Castillo L (2003) Lung computed tomography during a lung recruitment maneuver in patients with acute lung injury. Intensive Care Med 29:218–225PubMedGoogle Scholar
  30. 30.
    Puybasset L, Gusman P, Muller JC, Cluzel P, Coriat P, Rouby JJ (2000) Regional distribution of gas and tissue in acute respiratory distress syndrome. III. Consequences for the effects of positive end-expiratory pressure. CT Scan ARDS Study Group. Adult Respiratory Distress Syndrome. Intensive Care Med 26:1215–1227CrossRefPubMedGoogle Scholar
  31. 31.
    Dambrosio M, Roupie E, Mollet JJ, Anglade MC, Vasile N, Lemaire F, Brochard L (1997) Effects of positive end-expiratory pressure and different tidal volumes on alveolar recruitment and hyperinflation. Anesthesiology 87:495–503CrossRefPubMedGoogle Scholar
  32. 32.
    Nieszkowska A, Lu Q, Vieira S, Elman M, Fetita C, Rouby JJ (2004) Incidence and regional distribution of lung overinflation during mechanical ventilation with positive end-expiratory pressure. Crit Care Med 32:1496–1503CrossRefPubMedGoogle Scholar
  33. 33.
    Markhorst DG, van Genderingen HR, van Vught AJ (2004) Static pressure-volume curve characteristics are moderate estimators of optimal airway pressures in a mathematical model of (primary/pulmonary) acute respiratory distress syndrome. Intensive Care Med 30:2086–2093CrossRefPubMedGoogle Scholar
  34. 34.
    Gattinoni L, Caironi P, Pelosi P, Goodman LR (2001) What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med 164:1701–1711PubMedGoogle Scholar
  35. 35.
    Roupie E, Dambrosio M, Servillo G, Mentec H, el Atrous S, Beydon L, Brun-Buisson C, Lemaire F, Brochard L (1995) Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med 152:121–128PubMedGoogle Scholar
  36. 36.
    Schmitt JM, Vieillard-Baron A, Augarde R, Prin S, Page B, Jardin F (2001) Positive end-expiratory pressure titration in acute respiratory distress syndrome patients: impact on right ventricular outflow impedance evaluated by pulmonary artery Doppler flow velocity measurements. Crit Care Med 29:1154–1158CrossRefPubMedGoogle Scholar
  37. 37.
    Bruhn A, Hernandez G, Bugedo G, Castillo L (2004) Effects of positive end-expiratory pressure on gastric mucosal perfusion in acute respiratory distress syndrome. Crit Care 8:R306–R311CrossRefPubMedGoogle Scholar
  38. 38.
    Jonson B (2005) Elastic pressure-volume curves in acute lung injury and acute respiratory distress syndrome. Intensive Care Med 31:205–212CrossRefPubMedGoogle Scholar
  39. 39.
    Hickling KG (1998) The pressure-volume curve is greatly modified by recruitment. A mathematical model of ARDS lungs. Am J Respir Crit Care Med 158:194–202PubMedGoogle Scholar
  40. 40.
    Richard JC, Maggiore SM, Jonson B, Mancebo J, Lemaire F, Brochard L (2001) Influence of tidal volume on alveolar recruitment. Respective role of PEEP and a recruitment maneuver. Am J Respir Crit Care Med 163:1609–1613PubMedGoogle Scholar
  41. 41.
    Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351:327–336CrossRefPubMedGoogle Scholar
  42. 42.
    Holzapfel L, Robert D, Perrin F, Blanc PL, Palmier B, Guerin C (1983) Static pressure-volume curves and effect of positive end-expiratory pressure on gas exchange in adult respiratory distress syndrome. Crit Care Med 11:591–597PubMedGoogle Scholar
  43. 43.
    Takeuchi M, Goddon S, Dolhnikoff M, Shimaoka M, Hess D, Amato MB, Kacmarek RM (2002) Set positive end-expiratory pressure during protective ventilation affects lung injury. Anesthesiology 97:682–692CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Guillermo M. Albaiceta
    • 1
    Email author
  • Luis H. Luyando
    • 2
  • Diego Parra
    • 1
  • Rafael Menendez
    • 2
  • Juan Calvo
    • 2
  • Paula Rodríguez Pedreira
    • 1
  • Francisco Taboada
    • 1
  1. 1.Department of Intensive MedicineHospital Universitario Central de AsturiasOviedoSpain
  2. 2.Department of RadiologyHospital Universitario Central de AsturiasOviedoSpain

Personalised recommendations