Intensive Care Medicine

, Volume 31, Issue 7, pp 985–992

Inducible nitric oxide synthase inhibition improves intestinal microcirculatory oxygenation and CO2 balance during endotoxemia in pigs

  • Martin Siegemund
  • Jasper van Bommel
  • Lothar A. Schwarte
  • Wolfgang Studer
  • Thierry Girard
  • Stephan Marsch
  • Peter Radermacher
  • Can Ince



We examined whether selective inhibition of inducible nitric oxide synthase (iNOS) promotes intestinal microvascular oxygenation (µPO2) and CO2 off-load after endotoxic shock.

Design and setting

Prospective, controlled experimental study in a university animal research laboratory.


13 domestic pigs.


After baseline measurements shock was induced by 1 µg kg−1 h−1 endotoxin until mean arterial pressure fell below 60 mmHg. After 30 min in shock the animals were resuscitated with either fluid alone (control, n=6) or fluid and the iNOS inhibitor N-[3-(aminomethyl)benzyl]acetamidine hydrochloride (1400W, n=7). As final experimental intervention all animals received the nonselective NOS inhibitor L-NAME.

Measurements and results

Systemic and regional hemodynamic and oxygenation parameters were measured at baseline, during endotoxemia and shock, hourly for 3 h of 1400W therapy, and 30 min after the final L-NAME administration. µPO2 was assessed by the Pd-porphyrin phosphorescence technique, and the arterial to intestinal PCO2 gap was determined by air tonometry. Endotoxemia and shock resulted in a decrease in ileal mucosal and serosal µPO2 and a rise in PCO2 gap. The combination of 1400W and fluid resuscitation, but not fluid alone, normalized both the serosal µPO2 and the intestinal PCO2 gap. Administration of L-NAME decreased cardiac output and oxygen delivery and intestinal µPO2 and blood flow in both groups.


Partial blockade of NO production by 1400W increased serosal microvascular oxygenation and decreased the intestinal CO2 gap. This findings are consistent with the idea that 1400W corrects pathological flow distribution and regional dysoxia within the intestinal wall following endotoxic shock.


Shock, septic Endotoxemia, physiopathology Regional blood flow, drug effects Microcirculation, physiopathology Oxygen consumption, drug effects Nitric-oxide synthase 


  1. 1.
    Dellinger RP (2003) Cardiovascular management of septic shock. Crit Care Med 31:946–955CrossRefPubMedGoogle Scholar
  2. 2.
    Price S, Anning PB, Mitchell JA, Evans TW (1999) Myocardial dysfunction in sepsis: mechanisms and therapeutic implications. Eur Heart J 20:715–724CrossRefPubMedGoogle Scholar
  3. 3.
    Ince C, Sinaasappel M (1999) Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 27:1369–1377CrossRefPubMedGoogle Scholar
  4. 4.
    Siegemund M, van Bommel J, Ince C (1999) Assessment of tissue oxygenation. Intensive Care Med 25:1044–1060CrossRefPubMedGoogle Scholar
  5. 5.
    Fink MP (2002) Bench-to-bedside review: cytopathic hypoxia. Crit Care 6:491–499CrossRefPubMedGoogle Scholar
  6. 6.
    Brown GC (2001) Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta 1504:46–57PubMedGoogle Scholar
  7. 7.
    Lopez A, Lorente JA, Steingrub J, Bakker J, McLuckie A, Willatts S, Brockway M, Anzueto A, Holzapfel L, Breen D, Silverman MS, Takala J, Donaldson J, Arneson C, Grove G, Grossman S, Grover R (2004) Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 32:21–30CrossRefPubMedGoogle Scholar
  8. 8.
    Liaudet L, Rosselet A, Schaller MD, Markert M, Perret C, Feihl F (1998) Nonselective versus selective inhibition of inducible nitric oxide synthase in experimental endotoxic shock. J Infect Dis 177:127–132PubMedGoogle Scholar
  9. 9.
    Laszlo F, Whittle BJ (1997) Actions of isoform-selective and non-selective nitric oxide synthase inhibitors on endotoxin-induced vascular leakage in rat colon. Eur J Pharmacol 334:99–102CrossRefPubMedGoogle Scholar
  10. 10.
    Strunk V, Hahnenkamp K, Schneuing M, Fischer LG, Rich GF (2001) Selective iNOS inhibition prevents hypotension in septic rats while preserving endothelium-dependent vasodilation. Anesth Analg 92:681–687PubMedGoogle Scholar
  11. 11.
    Pittner A, Nalos M, Asfar P, Yang Y, Ince C, Georgieff M, Bruckner UB, Radermacher P, Froba G (2003) Mechanisms of inducible nitric oxide synthase (iNOS) inhibition-related improvement of gut mucosal acidosis during hyperdynamic porcine endotoxemia. Intensive Care Med 29:312–316PubMedGoogle Scholar
  12. 12.
    Stehr A, Ploner F, Tugtekin I, Matejovic M, Theisen M, Zulke C, Georgieff M, Radermacher P, Jauch KW (2003) Effect of combining nicotinamide as a PARS-inhibitor with selective iNOS blockade during porcine endotoxemia. Intensive Care Med 29:995–1002PubMedGoogle Scholar
  13. 13.
    Matejovic M, Radermacher P, Tugtekin I, Stehr A, Theisen M, Vogt J, Wachter U, Ploner F, Georgieff M, Traeger K (2001) Effects of selective iNOS inhibition on gut and liver O2-exchange and energy metabolism during hyperdynamic porcine endotoxemia. Shock 16:203–210PubMedGoogle Scholar
  14. 14.
    Cohen RI, Shapir Y, Davis A, Loona R, Scharf SM (2000) Comparison between selective and nonselective nitric oxide synthase inhibition and phenylephrine in normal and endotoxic swine. Crit Care Med 28:3257–3267CrossRefPubMedGoogle Scholar
  15. 15.
    Borutaite V, Matthias A, Harris H, Moncada S, Brown GC (2001) Reversible inhibition of cellular respiration by nitric oxide in vascular inflammation. Am J Physiol Heart Circ Physiol 281:H2256–H2260PubMedGoogle Scholar
  16. 16.
    Ellis CG, Bateman RM, Sharpe MD, Sibbald WJ, Gill R (2002) Effect of a maldistribution of microvascular blood flow on capillary O2 extraction in sepsis. Am J Physiol 282:H156–H164PubMedGoogle Scholar
  17. 17.
    Lam C, Tyml K, Martin C, Sibbald W (1994) Microvascular perfusion is impaired in a rat model of normotensive sepsis. J Clin Invest 94:2077–2083PubMedGoogle Scholar
  18. 18.
    Lush CW, Kvietys PR (2000) Microvascular dysfunction in sepsis. Microcirculation 7:83–101CrossRefPubMedGoogle Scholar
  19. 19.
    Tugtekin IF, Radermacher P, Theisen M, Matejovic M, Stehr A, Ploner F, Matura K, Ince C, Georgieff M, Träger K (2001) Increased ileal-mucosal-arterial PCO2 gap is associated with impaired villus microcirculation in endotoxic pigs. Intensive Care Med 27:757–766CrossRefPubMedGoogle Scholar
  20. 20.
    Revelly JP, Ayuse T, Brienza N, Fessler HE, Robotham JL (1996) Endotoxic shock alters distribution of blood flow within the intestinal wall. Crit Care Med 24:1345–1351CrossRefPubMedGoogle Scholar
  21. 21.
    Revelly J-P, Liaudet L, Frascarolo P, Joseph J-M, Martinet O, Markert M (2000) Effects of norepinephrine on the distribution of intestinal blood flow and tissue adenosine triphosphate content in endotoxic shock. Crit Care Med 28:2500–2506CrossRefPubMedGoogle Scholar
  22. 22.
    Neviere RR, Pitt-Hyde ML, Piper RD, Sibbald WJ, Potter RF (1999) Microvascular perfusion deficits are not a prerequisite for mucosal injury in septic rats. Am J Physiol 276:G933–G940PubMedGoogle Scholar
  23. 23.
    van der Meer JT, Wang H, Fink MP (1995) Endotoxemia causes ileal mucosal acidosis in the absence of mucosal hypoxia in a normodynamic porcine model of septic shock. Crit Care Med 23:1217–1226PubMedGoogle Scholar
  24. 24.
    Morin M, J, Unno N, Hodin RA, Fink MP (1998) Differential experession of inducible nitric oxide synthase messenger RNA along the longitudinal and crypt-villus axes of the intestine in endotoxemic rats. Crit Care Med 26:1258–1264CrossRefPubMedGoogle Scholar
  25. 25.
    Avontuur JAM, Bruining HA, Ince C (1997) Nitric oxide causes dysfunction of coronary autoregulation in endotoxemic rats. Cardiovasc Res 35:368–376CrossRefPubMedGoogle Scholar
  26. 26.
    Garvey EP, Oplinger JA, Furfine ES, Kiff RJ, Laszlo F, Whittle BJ, Knowles RG (1997) 1400 W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J Biol Chem 272:4959–4963PubMedGoogle Scholar
  27. 27.
    Siegemund M, van Bommel J, Schwarte LA, Emons M, Ince C (2001) Selective blockade of iNOS by 1400 W restores the gut oxygenation in a pig model of low-dose endotoxemia (abstract 48). Intensive Care Med 27:S147Google Scholar
  28. 28.
    Schlichtig R, Mehta N, Gayowski TJ (1996) Tissue-arterial PCO2 difference is a better marker of ischemia than intramural pH (pHi) or arterial pH-pHi difference. J Crit Care 11:51–56CrossRefPubMedGoogle Scholar
  29. 29.
    Sinaasappel M, Ince C (1996) Calibration of Pd-porphyrin phosphorescence for oxygen concentration measurements in vivo. J Appl Physiol 81:2297–2303PubMedGoogle Scholar
  30. 30.
    Vanderkooi JM, Maniara G, Green TJ, Wilson DF (1987) An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence. J Biol Chem 262:5476–5482Google Scholar
  31. 31.
    Shonat RD, Johnson PC (1997) Oxygen tension gradients and heterogeneity in venous microcirculation: a phosphorescence quenching study. Am J Physiol 272:H2233–H2240PubMedGoogle Scholar
  32. 32.
    Sinaasappel M, van Iterson M, Ince C (1999) Microvascular oxygen pressure in the pig intestine during haemorrhagic shock and resuscitation. J Physiol (Lond) 514:245–253Google Scholar
  33. 33.
    Sinaasapple M, Donkersloot C, van Bommel J, Ince C (1999) PO2 measurements in the rat intestinal microcirculation. Am J Physiol 276:G1515–G1520PubMedGoogle Scholar
  34. 34.
    Flesch M, Kilter H, Cremers B, Laufs U, Sudkamp M, Ortmann M, Muller FU, Bohm M (1999) Effects of endotoxin on human myocardial contractility involvement of nitric oxide and peroxynitrite. J Am Coll Cardiol 33:1062–1070CrossRefPubMedGoogle Scholar
  35. 35.
    Cohen RI, Hassell AM, Ye X, Marzouk K, Liu SF (2003) Lipopolysaccharide down-regulates inducible nitric oxide synthase expression in swine heart in vivo. Biochem Biophys Res Commun 307:451–458CrossRefPubMedGoogle Scholar
  36. 36.
    Avontuur JA, Bruining HA, Ince C (1995) Inhibition of nitric oxide synthesis causes myocardial ischemia in endotoxemic rats. Circ Res 76:418–425PubMedGoogle Scholar
  37. 37.
    Träger K, Rademacher P, Rieger KM, Vlatten A, Vogt J, Iber T, Adler J, Wachter U, Grover R, Georgieff M, Santak B (1999) Norepinephrine and NG-monomethyl-L-arginine in porcine septic shock. Am J Respir Crit Care Med 159:1758–1765PubMedGoogle Scholar
  38. 38.
    Sielenkämper AW, Meyer J, Kloppenburg H, Eicker K, Van Aken H (2001) The effects of sepsis on gut mucosal blood flow in rats. Eur J Anaesthesiol 18:673–678CrossRefPubMedGoogle Scholar
  39. 39.
    Crouser ED, Julian MW, Weinstein DM, Fahy RJ, Bauer JA (2000) Endotoxin-induced ileal mucosal injury and nitric oxide dysregulation are temporally dissociated. Am J Respir Crit Care Med 161:1705–1712PubMedGoogle Scholar
  40. 40.
    Unno N, Wang H, Menconi MJ, Tytgat SH, Larkin V, Smith M, Morin MJ, Chavez A, Hodin RA, Fink MP (1997) Inhibition of inducible nitric oxide synthase ameliorates endotoxin-induced gut mucosal barrier dysfunction in rats. Gastroenterology 113:1246–1257PubMedGoogle Scholar
  41. 41.
    Kalff JC, Schraut WH, Billiar TR, Simmons RL, Bauer AJ (2000) Role of inducible nitric oxide synthase in postoperative intestinal smooth muscle dysfunction in rodents. Gastroenterology 118:316–327PubMedGoogle Scholar
  42. 42.
    Matejovic M, Krouzecky A, Martinkova V, Rokyta R Jr, Kralova H, Treska V, Radermacher P, Novak I (2004) Selective inducible nitric oxide synthase inhibition during long-term hyperdynamic porcine bacteremia. Shock 21:458–465CrossRefPubMedGoogle Scholar
  43. 43.
    Brown GC (1999) Nitric oxide and mitochondrial respiration. Biochim Biophys Acta 1411:351–369PubMedGoogle Scholar
  44. 44.
    Javeshghani D, Magder S (2001) Presence of nitrotyrosine with minimal inducible nitric oxide synthase induction in lipopolysaccharide-treated pigs. Shock 16:304–311PubMedGoogle Scholar
  45. 45.
    King CJ, Tytgat S, Delude RL, Fink MP (1999) Ileal mucosal oxygen consumption is decreased in endotoxemic rats but is restored toward normal by treatment with aminoguanidine. Crit Care Med 27:2518–2524CrossRefPubMedGoogle Scholar
  46. 46.
    Cohen RI, Hassell AM, Marzouk K, Marini C, Liu SF, Scharf SM (2001) Renal effects of nitric oxide in endotoxemia. Am J Respir Crit Care Med 164:1890–1895PubMedGoogle Scholar
  47. 47.
    Albertini M, Lafortuna CL, Clement MG, Mazzola S, Radice S, Hussain SN (2002) Effect of NO synthase inhibition on cardiovascular and pulmonary dysfunction in a porcine short-term model of endotoxic shock. Prostaglandins Leukot Essent Fatty Acids 67:365–372CrossRefPubMedGoogle Scholar
  48. 48.
    Snygg J, Casselbrant A, Pettersson A, Holm M, Fandriks L, Aneman A (2000) Tonometric assessment of jejunal mucosal nitric oxide formation in anaesthetized pigs. Acta Physiol Scand 169:39–45CrossRefPubMedGoogle Scholar
  49. 49.
    Mehta S, Javeshghani D, Datta P, Levy RD, Magder S (1999) Porcine endotoxemic shock is associated with increased expired nitric oxide. Crit Care Med 27:385–393CrossRefPubMedGoogle Scholar
  50. 50.
    Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Martin Siegemund
    • 1
    • 2
    • 3
  • Jasper van Bommel
    • 4
  • Lothar A. Schwarte
    • 1
  • Wolfgang Studer
    • 2
  • Thierry Girard
    • 2
  • Stephan Marsch
    • 3
  • Peter Radermacher
    • 5
  • Can Ince
    • 1
  1. 1.Department of Physiology, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Anesthesia, University HospitalUniversity of BaselBaselSwitzerland
  3. 3.Medical ICU, University HospitalUniversity of BaselBaselSwitzerland
  4. 4.Department of Anesthesiology, Erasmus Medical CenterUniversity of RotterdamRotterdamThe Netherlands
  5. 5.Anästhesiologische Pathophysiologie und VerfahrensentwicklungUniversity HospitalUlmGermany

Personalised recommendations