Intensive Care Medicine

, Volume 32, Issue 3, pp 349–360 | Cite as

Organ dysfunction during sepsis

Seminal Study in Intensive Care

Abstract

Background

Multiple organ dysfunction syndrome is the commonest reason for sepsis-associated mortality.

Discussion

In the 40 years since it was first described understanding of its pathophysiology has improved, and novel methodologies for monitoring and severity of illness scoring have emerged. These, together with the development of systematic strategies for managing organ dysfunction in sepsis, and potentially effective new therapeutic interventions, should assist in reducing sepsis-associated mortality.

Conclusion

These historical developments are discussed, and the reader is directed to these references for further guidance.

Keywords

Multiple organ dysfunction syndrome Sepsis Microvascular dysfunction Cytopathic hypoxia Bioenergetic failure Scoring system 

References

  1. 1.
    Members of the American College of Chest Physicians/Society of Crit Care Med Consensus Conference Committee: American College of Chest Physicians/Society of Crit Care Med Consensus conference (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874Google Scholar
  2. 2.
    Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G, SCCM/ESICM/ACCP/ATS/SIS (2003) 2001 International Sepsis Definitions Conference. Crit Care Med 31:1250–1256PubMedGoogle Scholar
  3. 3.
    Brun-Buisson C (2000) The epidemiology of the systemic inflammatory response. Intensive Care Med 26 [Suppl 1]:S64–S74Google Scholar
  4. 4.
    Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554PubMedGoogle Scholar
  5. 5.
    Annane D, Aegerter P, Jars-Guincestre MC, Guidet B (2003) Current epidemiology of septic shock: the CUB-Rea Network. Am J Respir Crit Care Med 168:165–172PubMedGoogle Scholar
  6. 6.
    Padkin A, Goldfrad C, Brady AR, Young D, Black N, Rowan K (2003) Epidemiology of severe sepsis occurring in the first 24 hrs in intensive care units in England, Wales, and Northern Ireland. Crit Care Med 31:2332–2338PubMedGoogle Scholar
  7. 7.
    Eiseman B, Beart R, Norton L (1977) Multiple organ failure. Surg Gynecol Obstet 144:323–326PubMedGoogle Scholar
  8. 8.
    Fry DE, Pearlstein L, Fulton RL, Polk HC Jr (1980) Multiple system organ failure. Arch Surg 115:136–140PubMedGoogle Scholar
  9. 9.
    Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, LeGall JR, Morris A, Spragg R (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824PubMedGoogle Scholar
  10. 10.
    Milberg JA, Davis DR, Steinberg KP, Hudson LD (1995) Improved survival of patients with acute respiratory distress syndrome 1983–1993. JAMA 273:306–309PubMedGoogle Scholar
  11. 11.
    Angus DC, Musthafa AA, Clermont G, Griffin MF, Linde-Zwirble WT, Dremsizov TT, Pinsky MR (2001) Quality-adjusted survival in the first year after the acute respiratory distress syndrome. Am J Respir Crit Care Med 163:1389–1394PubMedGoogle Scholar
  12. 12.
    Fink MP, Evans TW (2002) Mechanisms of organ dysfunction in critical illness: report from a round table conference held in Brussels. Intensive Care Med 28:369–375PubMedGoogle Scholar
  13. 13.
    Parrillo JE, Burch C, Shelhamer JH, Parker MM, Natanson C, Schuette W (1985) A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest 76:1539–1553PubMedCrossRefGoogle Scholar
  14. 14.
    Lam C, Tyml K, Martin C, Sibbald W (1994) Microvascular perfusion is impaired in a rat model of normotensive sepsis. J Clin Invest 94:2077–2083PubMedGoogle Scholar
  15. 15.
    Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831PubMedGoogle Scholar
  16. 16.
    Fink MP (2002) Bench-to-bedside review: cytopathic hypoxia. Crit Care 6:491–499PubMedGoogle Scholar
  17. 17.
    Sair M, Etherington PJ, Winlove CP, Evans TW (2001) Tissue oxygenation and perfusion in human skeletal muscle in patients with systemic sepsis. Crit Care Med 29:1343–1349PubMedGoogle Scholar
  18. 18.
    Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223PubMedGoogle Scholar
  19. 19.
    Mira JP, Cariou A, Grall F, Delclaux C, Losser MR, Heshmati F, Cheval C, Monchi M, Teboul JL, Riche F, Leleu G, Arbibe L, Mignon A, Delpech M, Dhainaut JF (1999) Association of TNF2, a TNF-alpha promoter polymorphism, with septic shock susceptibility and mortality: a multicenter study. JAMA 282:561–568PubMedGoogle Scholar
  20. 20.
    Levi M, Ten Cate H (1999) Disseminated intravascular coagulation. N Engl J Med 341:586–592PubMedGoogle Scholar
  21. 21.
    Godin PJ, Buchman TG (1996) Uncoupling of biological oscillators: a complementary hypothesis concerning the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med 24:1107–1116PubMedGoogle Scholar
  22. 22.
    Fink MP (2005) Epithelial barrier dysfunction: a unifying theme to explain the pathogenesis of multiple organ dysfunction at the cellular level. Crit Care Clin 21:177–196PubMedGoogle Scholar
  23. 23.
    Carrico CJ, Meakins JL, Marshall JC, Fry D, Maier RV (1986) Multiple-organ-failure syndrome: the gastrointestinal tract-the motor of MOF. Arch Surg 121:197–201Google Scholar
  24. 24.
    Fine J, Frank ED, Rutenberg SH, Schweinburg FB (1959) The bacterial factor in traumatic shock. N Engl J Med 260:214–220PubMedCrossRefGoogle Scholar
  25. 25.
    Chiu CJ, McArdle AH, Brown R, Scott HJ, Gurd FN (1970) Intestinal mucosal lesion in low-flow states. A morphological, hemodynamic, and metabolic appraisal. Arch Surg 101:478–483PubMedGoogle Scholar
  26. 26.
    Fink MP, Antonsson JB, Wang HL, Rothschild HR (1991) Increased intestinal permeability in endotoxic pigs. Mesenteric hypoperfusion as an etiologic factor. Arch Surg 126:211–218PubMedGoogle Scholar
  27. 27.
    Matuschak GM, Rinaldo JE (1988) Organ interaction in the adult respiratory distress syndrome during sepsis: role of the liver in host defence. Chest 94:400–406PubMedGoogle Scholar
  28. 28.
    Hatherill M, Tibby SM, Turner C, Ratnavel N, Murdoch IA (2000) Procalcitonin and cytokine levels: relationship to organ failure and mortality in pediatric septic shock. Crit Care Med 28:2591–2594PubMedGoogle Scholar
  29. 29.
    Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348:138–150PubMedGoogle Scholar
  30. 30.
    Hotchkiss RS, Swanson PE, Freeman BD, et al (1999) Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 27:1230–1251PubMedGoogle Scholar
  31. 31.
    Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) Prognosis in acute organ-system failure. Ann Surg 202:685–693PubMedGoogle Scholar
  32. 32.
    Le Gall JR, Lemeshow S, Saulnier F (1993) A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 270:2957–2963PubMedGoogle Scholar
  33. 33.
    Lemeshow S, Klar J, Teres D, Avrunin JS, Gehlbach SH, Rapoport J, Rue M (1994) Mortality probability models for patients in the intensive care unit for 48 or 72 hours: a prospective, multicenter study. Crit Care Med 22:1351–1358PubMedGoogle Scholar
  34. 34.
    Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG, Sirio CA, Murphy DJ, Lotring T, Damiano A (1991) The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest 100:1619–1636PubMedGoogle Scholar
  35. 35.
    Moreno R, Morais P (1997) Outcome prediction in intensive care: results of a prospective, multicentre Portuguese study. Intensive Care Med 23:177–186PubMedGoogle Scholar
  36. 36.
    Moreno R, Vincent JL, Matos R, Mendonca A, Cantraine F, Thijs L, Takala J, Sprung C, Antonelli M, Bruining H, Willatts S (1999) The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicentre study. Intensive Care Med 25:686–696PubMedGoogle Scholar
  37. 37.
    Ferreira FL, Bota DP, Bross A, Melot C, Vincent JL (2001) Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA 286:1754–1758PubMedGoogle Scholar
  38. 38.
    Joly HR, Weil MH (1969) Temperature of the great toe as an indication of the severity of shock. Circulation 39:131–138PubMedGoogle Scholar
  39. 39.
    Yoshiya I, Shimada Y, Tanaka K (1980) Spectrophotometric monitoring of arterial oxygen saturation at the fingertip. Med Biol Eng Comput 18:27–32PubMedGoogle Scholar
  40. 40.
    Lundberg N, Troupp H, Lorin H (1965) Continuous recording of the ventricular-fluid pressure in patients with severe acute traumatic brain injury. J Neurosurg 22:581–590PubMedGoogle Scholar
  41. 41.
    Gutierrez G, Palizas F, Doglio G, Wainsztein N, Gallesio A, Pacin J, Dubin A, Schiavi E, Jorge M, Pusajo J (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339:195–199PubMedGoogle Scholar
  42. 42.
    Bakker J, Gris P, Coffernils M, Kahn RJ, Vincent JL (1996) Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg 171:221–226PubMedGoogle Scholar
  43. 43.
    Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent JL, Levy MM (2004) Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 32:858–873PubMedGoogle Scholar
  44. 44.
    Khalil HH, Richardson TQ, Guyton AC (1966) Measurement of cardiac output by thermal dilution and direct Fick method in dogs. J Appl Physiol 21:1131–1135PubMedGoogle Scholar
  45. 45.
    Branthwaite MA, Bradley RD (1968) Measurement of cardiac output by thermal dilution in man. J Appl Physiol 24:434–438PubMedGoogle Scholar
  46. 46.
    Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D (1970) Catheterisation of the heart in man with use of a flow directed balloon-tipped catheter. N Engl J Med 283:447–451PubMedCrossRefGoogle Scholar
  47. 47.
    Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, Desbiens N, Goldman L, Wu AW, Califf RM, Fulkerson WJ Jr, Vidaillet H, Broste S, Bellamy P, Lynn J, Knaus WA (1996) The effectiveness of right heart catheterisation in the initial care of critically ill patients. SUPPORT investigators. JAMA 276:889–897PubMedGoogle Scholar
  48. 48.
    Matthay MA, Chatterjee K (1988) Bedside catheterisation of the pulmonary artery: risks compared with benefits. Ann Intern Med 109:826–834PubMedGoogle Scholar
  49. 49.
    Linton RA, Band DM, Haire KM (1993) A new method of measuring cardiac output in man using lithium dilution. Br J Anaesth 71:262–266PubMedGoogle Scholar
  50. 50.
    Orme RM, L'EPigott DW, Mihm FG (2004) Measurement of cardiac output by transpulmonary arterial thermodilution using a long radial artery catheter. A comparison with intermittent pulmonary artery thermodilution. Anaesthesia 59:590–594PubMedGoogle Scholar
  51. 51.
    Singer M, Clarke J, Bennett ED (1989) Continuous haemodynamic monitoring by esophageal Doppler. Crit Care Med 17:447–452PubMedGoogle Scholar
  52. 52.
    Vieillard-Baron A, Prin S, Chergui K, Dubourg O, Jardin F (2003) Hemodynamic instability in sepsis: bedside assessment by Doppler echocardiography. Am J Respir Crit Care Med 168:1270–1276PubMedGoogle Scholar
  53. 53.
    Armstrong RF, Walker JS, Andrew DS, Cobbe SM, Cohen SL, Lincoln JC (1978) Continuous monitoring of mixed venous oxygen tension (PvO2) in cardiorespiratory disorders. Lancet I:632–634Google Scholar
  54. 54.
    Reinhart K, Kuhn HJ, Hartog C, Bredle DL (2004) Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med 30:1572–1578PubMedGoogle Scholar
  55. 55.
    Rady MY, Rivers EP, Nowak RM (1996) Resuscitation of the critically ill in the ED: responses of blood pressure, heart rate, shock index, central venous oxygen saturation, and lactate. Am J Emerg Med 14:218–25PubMedGoogle Scholar
  56. 56.
    Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377PubMedGoogle Scholar
  57. 57.
    Weil MH, Shubin H, Biddle M (1964) Shock caused by Gram-negative organisms: analysis of 169 cases. Ann Intern Med 60:384–400PubMedGoogle Scholar
  58. 58.
    Ibrahim EH, Sherman G, Ward S, Fraser VJ, Kollef MH (2000) The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 118:146–155PubMedGoogle Scholar
  59. 59.
    MacArthur RD, Miller M, Albertson T, Panacek E, Johnson D, Teoh L, Barchuk W (2004) Adequacy of early empiric antibiotic treatment and survival in severe sepsis: experience from the MONARCS trial. Clin Infect Dis 38:284–288PubMedGoogle Scholar
  60. 60.
    MacLean LD, Mulligan WG, McLean APH, Duff JH (1967) Patterns of septic shock in man—a detailed study of 56 patients. Ann Surg 166:543–562PubMedGoogle Scholar
  61. 61.
    Cochrane Injuries Group Albumin Reviewers (1998) Human albumin administration in critically ill patients: systematic review of randomised controlled trials. BMJ 317:235–240Google Scholar
  62. 62.
    Choi PT, Yip G, Quinonez LG, Cook DJ (1999) Crystalloids vs. colloids in fluid resuscitation: a systematic review. Crit Care Med 27:200–210PubMedGoogle Scholar
  63. 63.
    Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R; SAFE Study Investigators (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350:2247–2256PubMedGoogle Scholar
  64. 64.
    American Thoracic Society (2004) Evidence based colloid use in the critically ill. American Thoracic Society consensus statement. Am J Respir Crit Care Med 170:1247–1259Google Scholar
  65. 65.
    Shoemaker WC, Appel PL, Kram HB (1986) Hemodynamic and oxygen transport effects in critically ill general surgical patients. Crit Care Med 14:1032–1037PubMedCrossRefGoogle Scholar
  66. 66.
    Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high risk surgical patients. Chest 94:1176–1186PubMedGoogle Scholar
  67. 67.
    Boyd O, Grounds RM, Bennett ED (1993) A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high risk surgical patients. JAMA 270:2699–2707PubMedGoogle Scholar
  68. 68.
    Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330:1717–1722PubMedGoogle Scholar
  69. 69.
    Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, Fumagalli R (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med 333:1025–1032PubMedGoogle Scholar
  70. 70.
    Webb HH, Tierney DF (1974) Experimental pulmonary oedema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110:556–565PubMedGoogle Scholar
  71. 71.
    Dreyfuss D, Soler P, Basset G, Saumon G (1988) High Inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137:1159–1164PubMedGoogle Scholar
  72. 72.
    Hickling KG, Henderson SJ, Jackson R (1990) Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 16:372–377PubMedGoogle Scholar
  73. 73.
    Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308Google Scholar
  74. 74.
    Meduri GU, Headley AS, Golden E, Carson SJ, Umberger RA, Kelso T, Tolley EA (1998) Effect of prolonged methylprednisolone therapy in unresolving acute respiratory distress syndrome: a randomised controlled trial. JAMA 280:159–165PubMedGoogle Scholar
  75. 75.
    Kramer P, Kaufhold G, Grone HJ, Wigger W, Rieger J, Matthaei D, Stokke T, Burchardi H, Scheler F (1980) Management of anuric intensive care patients with arteriovenous hemofiltration. Int J Artif Organs 3:225–230PubMedGoogle Scholar
  76. 76.
    Rasmussen HH, Ibels LS (1982) Acute renal failure; a multivariate analysis of causes and risk factors. Am J Med 73:211–218PubMedGoogle Scholar
  77. 77.
    Levy EM, Viscoli CM, Horowitz RI (1996) The effect of acute renal failure on mortality: a cohort analysis. JAMA 275:1489–1494PubMedGoogle Scholar
  78. 78.
    Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310PubMedGoogle Scholar
  79. 79.
    Brivet FG, Kleinknecht DJ, Loirat P, Landais PJ (1996) Acute renal failure in intensive are units-causes, outcome, and prognostic factors for hospital mortality. Crit Care Med 24:192–198PubMedGoogle Scholar
  80. 80.
    Goldberg LI, Mcdonald RH, Zimmerman AM (1963) Sodium diuresis produced by dopamine in patients with congestive heart failure. N Engl J Med 263:1060–1064CrossRefGoogle Scholar
  81. 81.
    Australia and New Zealand Intensive Care Society (ANZICS) Clinical Trials group (2000) Low dose dopamaine in patients with early renal dysfunction: a placebo-controlled randomised trial. Lancet 356:2139–2143Google Scholar
  82. 82.
    Schiffl H, Lang SM, Fischer R (2002) Daily hemodialysis and the outcome of acute renal failure. N Engl J Med 346:305–310PubMedGoogle Scholar
  83. 83.
    Ronco C, Bellomo R, Homel P, Brendolan A, Dan M, Piccinni P, La Greca G (2000) Effects of different doses in continuous venovenous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet 356:26–30PubMedGoogle Scholar
  84. 84.
    Weil MH, Shubin H, Biddle M (1964) Shock caused by Gram-negative micro-organisms: analysis of 169 cases. Ann Intern Med 60:384–400PubMedGoogle Scholar
  85. 85.
    Schumer W (1976) Steroids in the treatment of clinical septic shock. Ann Surg 184:333–341PubMedGoogle Scholar
  86. 86.
    Bone RC, Fisher CJ Jr, Clemmer TP, Slotman GJ, Metz CA, Balk RA (1987) A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med 317:653–658PubMedCrossRefGoogle Scholar
  87. 87.
    Sprung CL, Caralis PV, Marcial EH, Pierce M, Gelbard MA, Long WM, Duncan RC, Tendler MD, Karpf M (1984) The effects of high-dose corticosteroids in patients with septic shock. N Engl J Med 311:1137–1143PubMedCrossRefGoogle Scholar
  88. 88.
    Bollaert PE, Charpentier C, Levy B, Debouverie M, Audibert G, Larcan A (1998) Reversal of late septic shock with supraphysiologic doses of hydrocortisone. Crit Care Med 26:645–650PubMedGoogle Scholar
  89. 89.
    Annane D, Sebille V, Troche G, Raphael JC, Gajdos P, Bellissant E (2000) A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin. JAMA 283:1038–1045PubMedGoogle Scholar
  90. 90.
    Annane D, Sebille V, Charpentier C, Bollaert PE, Francois B, Korach JM, Capellier G, Cohen Y, Azoulay E, Troche G, Chaumet-Riffaut P, Bellissant E (2002) Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 288:862–871PubMedGoogle Scholar
  91. 91.
    van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345:1359–1367PubMedGoogle Scholar
  92. 92.
    Finney SJ, Zekveld C, Elia A, Evans TW (2003) Glucose control and mortality in critically ill patients. JAMA 2041–2047Google Scholar
  93. 93.
    Levi M, ten Cate B (1999) Disseminated intravascular coagulation. N Engl J Med 341:586–592PubMedGoogle Scholar
  94. 94.
    Yan SB, Helterbrand JD, Hartman DL, Wright TJ, Bernard GR (2001) Low levels of protein C are associated with poor outcomes in sepsis. Chest 120:915–922PubMedGoogle Scholar
  95. 95.
    Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, Steingrub JS, Garber GE, Helterbrand JD, Ely EW, Fisher CJ Jr; Recombinant human protein C Worldwide Evaluation in Severe Sepsis (PROWESS) study group (2001) Recombinant Human Protein C Worldwide Evaluation in Severe Sepsis (PROWESS) study group. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344:699–709PubMedGoogle Scholar
  96. 96.
    Vincent JL (2003) Effects of drotrecogin alfa (activated) on organ dysfunction in the PROWESS Trial. Crit Care Med 31:834–840PubMedGoogle Scholar
  97. 97.
    Warren BL, Eid A, Singer P, Pillay SS, Carl P, Novak I, Chalupa P, Atherstone A, Penzes I, Kubler A, Knaub S, Keinecke HO, Heinrichs H, Schindel F, Juers M, Bone RC, Opal SM; KyberSept Trial Study Group (2001) Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA 286:1869–1878PubMedGoogle Scholar
  98. 98.
    Ziegler EJ, McCutchan JA, Fierer J, Glauser MP, Sadoff JC, Douglas H, Braude AI (1982) Treatment of gram-negative bacteremia and shock with human anti-serum to a mutant Escherichia coli. N Engl J Med 307:1225–1230PubMedCrossRefGoogle Scholar
  99. 99.
    Ziegler EJ, Fisher CJ Jr, Sprung CL, Straube RC, Sadoff JC, Foulke GE, Wortel CH, Fink MP, Dellinger RP, Teng NN; HA-1A Sepsis Study Group (1991) Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. A randomised, double blind placebo controlled trial. N Engl J Med 324:429–436PubMedCrossRefGoogle Scholar
  100. 100.
    Greenman RL, Schein RM, Martin MA, Wenzel RP, MacIntyre NR, Emmanuel G, Chmel H, Kohler RB, McCarthy M, Plouffe J; XOMA Sepsis Study Group (1991) A controlled clinical trial of E5 murine monoclonal IgM antibody to endotoxin in the treatment of gram-negative sepsis. JAMA 266:1097–1102PubMedGoogle Scholar
  101. 101.
    Abraham E, Wunderink R, Silverman H, Perl TM, Nasraway S, Levy H, Bone R, Wenzel RP, Balk R, Allred R (1995) Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. A randomized, controlled, double-blind, multicenter clinical trial. TNF-alpha MAb Sepsis Study Group. JAMA 273:934–941PubMedGoogle Scholar
  102. 102.
    Cohen J, Carlet J (1996) INTERSEPT: an international, multicenter, placebo-controlled trial of monoclonal antibody to human tumor necrosis factor-alpha in patients with sepsis. International Sepsis Trial Study Group. Crit Care Med 24:1431–1440PubMedGoogle Scholar
  103. 103.
    Abraham E, Anzueto A, Gutierrez G, Tessler S, San Pedro G, Wunderink R, Dal Nogare A, Nasraway S, Berman S, Cooney R, Levy H, Baughman R, Rumbak M, Light RB, Poole L, Allred R, Constant J, Pennington J, Porter S (1998) Double blind randomised controlled trial of monoclonal antibody to human tumor necrosis factor in the treatment of septic shock. NORASEPT II Study Group. Lancet 351:929–933PubMedGoogle Scholar
  104. 104.
    Panacek EA, Marshall JC, Albertson TE, Johnson DH, Johnson S, MacArthur RD, Miller M, Barchuk WT, Fischkoff S, Kaul M, Teoh L, Van Meter L, Daum L, Lemeshow S, Hicklin G, Doig C; Monoclonal Anti-TNF Randomized Controlled Sepsis Study Investigators (2004) Efficacy and safety of the monoclonal anti-tumor necrosis factor antibody F(ab')2 fragment afelimomab in patients with severe sepsis and elevated interleukin-6 levels. Crit Care Med 32:2173–2182PubMedGoogle Scholar
  105. 105.
    Marshall JC (2003) Much stuff as dreams are made on: mediator directed therapy in sepsis. Nat Rev Drug Discov 2:391–395PubMedGoogle Scholar
  106. 106.
    Abraham E, Matthay MA, Dinarello CA, Vincent JL, Cohen J, Opal SM, Glauser M, Parsons P, Fisher CJ Jr, Repine JE (2000) Consensus conference definitions for sepsis, septic shock, acute lung injury, and acute respiratory distress syndrome: time for a reevaluation. Crit Care Med 28:232–235PubMedGoogle Scholar
  107. 107.
    Lopez A, Lorente JA, Steingrub J, Bakker J, McLuckie A, Willatts S, Brockway M, Anzueto A, Holzapfel L, Breen D, Silverman MS, Takala J, Donaldson J, Arneson C, Grove G, Grossman S, Grover R (2004) Multiple-center, randomised placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 32:21–30PubMedGoogle Scholar
  108. 108.
    Marriott HL, Kerwick A (1935) Continuous drip blood transfusion. Lancet 1:977–981Google Scholar
  109. 109.
    Hebert PC, Wells G, Blajchman MA, Marshall J, Martin C, Pagliarello G, Tweeddale M, Schweitzer I, Yetisir E; Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group (1999) A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. N Engl J Med 340:409–17 (erratum: 340:1056)PubMedGoogle Scholar
  110. 110.
    Cook D, Guyatt G, Marshall J, Leasa D, Fuller H, Hall R, Peters S, Rutledge F, Griffith L, McLellan A, Wood G, Kirby A (1998) The Canadian Critical Care Trials Group. A comparison of sucralfate and ranitidine for the prevention of upper gastrointestinal bleeding in patients requiring mechanical ventilation. N Engl J Med 338:791–797PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Intensive Care MedicineChelsea and Westminster HospitalLondonUK
  2. 2.Department of Intensive Care Medicine, Royal Brompton HospitalImperial College School of MedicineLondonUK

Personalised recommendations