Advertisement

Intensive Care Medicine

, 32:318 | Cite as

Ultrasound estimation of volume of pleural fluid in mechanically ventilated patients

  • M Balik
  • P Plasil
  • P Waldauf
  • J Pazout
  • M Fric
  • M Otahal
  • J Pachl
Brief Report

Abstract

Objective

The aim was to develop a practical method for estimation of the volume of pleural effusion using ultrasonography in mechanically ventilated patients.

Design

Prospective observational study.

Setting

20-bed general intensive care unit in the university hospital.

Patients and participants

81 patients were included after initial suspicion of pleural fluid on chest supine X-ray and pre-puncture ultrasound confirming effusion. Patients with thoracic deformities, post-lung surgery, with diaphragm pathology, haemothorax, empyema and with incomplete aspiration of pleural fluid on post-puncture ultrasound were excluded.

Interventions

Patients were supine with mild trunk elevation at 15°. Probe was moved upwards in posterior axillary line, and transverse section perpendicular to the body axis was obtained with pleural separation visible at lung base. The maximal distance between parietal and visceral pleura (Sep) in end-expiration was recorded. Thoracentesis was performed at previous probe position and volume of pleural fluid (V) recorded.

Measurements and results

92 effusions were evaluated and drained; 11 (12%) were excluded for incomplete aspiration. Success rate of obtaining fluid under ultrasound guidance was 100%; the incidence of pneumothorax or bleeding was zero. Mean Sep was 35 ± 13 mm. Mean V was 658 ± 320 ml. Significant positive correlation between both Sep and V was found: r = 0.72; r 2 = 0.52; p < 0.001. The amount of pleural fluid volume can be estimated with the simplified formula: V (ml) = 20 × Sep (mm). Mean prediction error of V using Sep was 158.4 ± 160.6 ml.

Conclusions

Easy quantification of pleural fluid may help to decide about performing thoracentesis in high-risk patients, although thoracentesis under ultrasound guidance appears to be a safe procedure.

Keywords

Intensive care Pleural effusion Thoracentesis Ultrasound diagnosis 

References

  1. 1.
    Eibenberger KL, Dock WI, Ammann ME, Dorffner R, Hormann MF, Grabenwoger F (1994) Quantification of pleural effusions: sonography versus radiography. Radiology 191:681–684PubMedGoogle Scholar
  2. 2.
    Sahn SA (1999) Pleural disease in critically Ill patient. In: Irwin RS, Cerra FB, Rippe JM (eds) Intensive Care Med. Lippincott Raven, Philadelphia, pp 710–727Google Scholar
  3. 3.
    Coppage L, Jolles H, Henry DA (1995) Imaging of the chest in the intensive care setting. In: Shoemaker WC, Ayres SM, Grenvik A, Holbrook PR (eds) Textbook of critical care. Saunders, Philadelphia, pp 332–347Google Scholar
  4. 4.
    Fartoukh M, Azoulay E, Galliot R, Le Gall JR, Baud F, Chevret S, Schlemmer B (2002) Clinically documented pleural effusions in medical ICU patients. How useful Is routine thoracentesis? Chest 121:178–184PubMedCrossRefGoogle Scholar
  5. 5.
    Lichtenstein D, Hulot JS, Rabiller A, Tostivint I, Meziere G (1999) Feasibility and safety of ultrasound-aided thoracentesis in mechanically ventilated patients. Intensive Care Med 25:955–958CrossRefPubMedGoogle Scholar
  6. 6.
    Mayo PH, Goltz HR, Tafreshi M, Doelken P (2004) Safety of ultrasound-guided thoracentesis in patients receiving mechanical ventilation. Chest 125:1059–1062PubMedCrossRefGoogle Scholar
  7. 7.
    Jones PW, Moyers JP, Rogers JT, Rodriguez RM, Lee G, Light RW (2003) Ultrasound-guided thoracentesis. Is it a safer method? Chest 123:418–423PubMedCrossRefGoogle Scholar
  8. 8.
    Barterr T, Santarelli R, Akers SM, Pratter MR (1994) The evaluation of pleural effusion. Chest 106:1209–1214PubMedCrossRefGoogle Scholar
  9. 9.
    Lichtenstein D, Lascols N, Meziere G, Gepner A (2004) Ultrasound diagnosis of alveolar consolidation in critically ill. Intensive Care Med 30:276–281PubMedCrossRefGoogle Scholar
  10. 10.
    Lundquist H, Hedenstierna G, Strandberg A, Tokics L, Brismar B (1995) CT-assessment of dependent lung densities in man during general anaesthesia. Acta Radiol 36:626–632PubMedCrossRefGoogle Scholar
  11. 11.
    Vignon P, Chastagner C, Berkane V, Chardac E, Francois B, Normand S, Bonnivard M, Clavel M, Pichon N, Preux PM, Maubon A, Gastinne H (2005) Quantitative assessment of pleural effusion in critically ill patients by means of ultrasonography. Crit Care Med 33:1757–1763CrossRefPubMedGoogle Scholar
  12. 12.
    Roch A, Bojan M, Michelet P, Romain F, Bregeon F, Papazian L, Auffray JP (2005) Usefulness of ultrasonography in predicting pleural effusions > 500 ml in patients receiving mechanical ventilation. Chest 127:224–232CrossRefPubMedGoogle Scholar
  13. 13.
    Lichtenstein D, Menu Y (1995) A bedside ultrasound sign ruling out pneumothorax in the critically ill: lung sliding. Chest 108:1345–1348PubMedCrossRefGoogle Scholar
  14. 14.
    Ahmed SH, Ouzounian SP, DiRusso S, Sullivan T, Savino J, Del Guercio L (2004) Hemodynamic and pulmonary changes after drainage of significant pleural effusions in critically ill, mechanically ventilated surgical patients. J Trauma 57:1184–1188PubMedCrossRefGoogle Scholar
  15. 15.
    Gattinoni L, Vagginelli F, Chiumello D, Taccone P, Carlesso E (2003) Physiologic rationale for ventilator setting in acute lung injury/acute respiratory distress syndrome patients. Crit Care Med 31:300–304CrossRefGoogle Scholar
  16. 16.
    Talmor M, Hydo L, Gershenwald JG, Barie PS (1998) Beneficial effects of chest tube drainage of pleural effusion in acute respiratory failure refractory to PEEP ventilation. Surgery 123:137–143PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • M Balik
    • 1
    • 2
  • P Plasil
    • 1
  • P Waldauf
    • 1
  • J Pazout
    • 1
  • M Fric
    • 1
  • M Otahal
    • 1
  • J Pachl
    • 1
  1. 1.Department of Anaesthesiology and Intensive CareUniversity Hospital Kralovske VinohradyPrague 10Czech Republic
  2. 2.Department of Intensive CareWestmead HospitalWestmeadAustralia

Personalised recommendations