Intensive Care Medicine

, Volume 29, Issue 9, pp 1472–1481 | Cite as

ω-3 vs. ω-6 lipid emulsions exert differential influence on neutrophils in septic shock patients: impact on plasma fatty acids and lipid mediator generation

  • Konstantin Mayer
  • Christine Fegbeutel
  • Katja Hattar
  • Ulf Sibelius
  • Hans-Joachim Krämer
  • Kai-Uwe Heuer
  • Bettina Temmesfeld-Wollbrück
  • Stephanie Gokorsch
  • Friedrich Grimminger
  • Werner Seeger
Original

Abstract

Objective

To compare the effects of a conventional ω-6 lipid infusion and a fish oil based (ω-3) lipid infusion for parenteral nutrition on neutrophil function, lipid mediators, and plasma free fatty acids.

Design and setting

Open-label, randomized, pilot study in a university hospital medical intensive care unit and experimental laboratory.

Patients and participants

Ten patients with septic shock and eight healthy controls.

Interventions

Patients (five per group) requiring parenteral nutrition received intravenously either a ω-3 or a ω-6 lipid emulsion for a 10-day period.

Measurements and results

At baseline levels of plasma free fatty acids were elevated several-fold, including high concentrations of the ω-6 lipid precursor arachidonic acid (AA). Neutrophils isolated from septic patients displayed markedly reduced responsiveness to ex vivo stimulation, including lipid mediator generation [leukotrienes (LT), PAF], respiratory burst, and phosphoinositide hydrolysis signaling. Under the ω-6 lipid infusion regimen abnormalities in plasma free fatty acids and impairment of neutrophil functions persisted or worsened. In contrast, a rapid switch in the plasma free fatty acid fraction to predominance of the ω-3 acids eicosapentaenoic acid and docosahexaenoic acid over AA occurred in response to ω-3 lipid infusion. LTB5, in addition to LTB4, appeared upon neutrophil stimulation originating from these patients, and neutrophil function was significantly improved in the ω-3 lipid group.

Conclusions

ω-3 vs. ω-6 lipid emulsions differentially influence the plasma free fatty acid profile with impact on neutrophil functions. Lipid-based parenteral nutrition in septic patients may thus exert profound influence on sequelae and status of immunocompetence and inflammation.

Keywords

Septic shock Neutrophils Leukotrienes Fish oils Thromboxanes Total parenteral nutrition 

Supplementary material

Table 4 Plasma free fatty acids in septic patients and controls (PDF 64 KB)

table4.pdf (63 kb)
Table 4

References

  1. 1.
    Friedman G, Silva E, Vincent JL (1998) Has the mortality of septic shock changed with time? Crit Care Med 26:2078–2086Google Scholar
  2. 2.
    Wheeler AP, Bernard GR (1999) Treating patients with severe sepsis. N Engl J Med 340:207–214PubMedGoogle Scholar
  3. 3.
    Bone RC, Grodzin CJ, Balk RA (1997) Sepsis: a new hypothesis for pathogenesis of the disease process. Chest 112:235–243PubMedGoogle Scholar
  4. 4.
    Dinarello CA (1997) Proinflammatory and anti-inflammatory cytokines as mediators in the pathogenesis of septic shock. Chest 112:321S-329SPubMedGoogle Scholar
  5. 5.
    Chabot F, Mitchell JA, Gutteridge JM, Evans TW (1998) Reactive oxygen species in acute lung injury. Eur Respir J 11:745–757PubMedGoogle Scholar
  6. 6.
    Heller A, Koch T, Schmeck J, van Ackern K (1998) Lipid mediators in inflammatory disorders. Drugs 55:487–496PubMedGoogle Scholar
  7. 7.
    Yao YM, Redl H, Bahrami S, Schlag G (1998) The inflammatory basis of trauma/shock-associated multiple organ failure. Inflamm Res 47:201–210PubMedGoogle Scholar
  8. 8.
    Bone RC (1996) Sepsis, SIRS and CARS. Crit Care Med 24:1125–1128Google Scholar
  9. 9.
    Docke WD, Randow F, Syrbe U, Krausch D, Asadullahn K, Reinke P, Volk HD, Kox W (1997) Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nat Med 3:678PubMedGoogle Scholar
  10. 10.
    Kox WJ, Bone RC, Krausch D, Docke WD, Kox SN, Wauer H, Egerer K, Querner S, Asadullah K, Baehr R, Volk HD (1997) Interferon gamma-1b in the treatment of compensatory anti-inflammatory response syndrome. A new approach: proof of principle. Arch Intern Med 157:389–393PubMedGoogle Scholar
  11. 11.
    Solomkin JS, Jenkins MK, Nelson RD, Chenoweth D, Simmons RL (1981) Neutrophil dysfunction in sepsis. II. Evidence for the role of complement activation products in cellular deactivation. Surgery 90:319–327PubMedGoogle Scholar
  12. 12.
    Solomkin JS, Cotta LA, Brodt JK, Hurst JW, Ogle CK (1984) Neutrophil dysfunction in sepsis. III. Degranulation as a mechanism for nonspecific deactivation. J Surg Res 36:407–412PubMedGoogle Scholar
  13. 13.
    Sorrell TC, Sztelma K, May GL (1994) Circulating polymorphonuclear leukocytes from patients with gram-negative bacteremia are not primed for enhanced production of leukotriene B4 or 5-hydroxyeicosatetraenoic acid. J Infect Dis 169:1151–1154PubMedGoogle Scholar
  14. 14.
    Pascual C, Karzai W, Meier-Hellmann A, Bredle DL, Reinhart K (1997) A controlled study of leukocyte activation in septic patients. Intensive Care Med 23:743–748CrossRefPubMedGoogle Scholar
  15. 15.
    Mayer K, Seeger W, Grimminger F (1998) Clinical use of lipids to control inflammatory disease. Curr Opin Clin Nutr Metab Care 1:179–184CrossRefPubMedGoogle Scholar
  16. 16.
    Calder PC (1998) Immunoregulatory and anti-inflammatory effects of n-3 polyunsaturated fatty acids. Braz J Med Biol Res 31:467–490PubMedGoogle Scholar
  17. 17.
    Vognild E, Elvevoll EO, Brox J, Olsen RL, Barstad H, Aursand M, Osterud B (1998) Effects of dietary marine oils and olive oil on fatty acid composition, platelet membrane fluidity, platelet responses, and serum lipids in healthy humans. Lipids 33:427–436PubMedGoogle Scholar
  18. 18.
    Guarini P, Bellavite P, Biasi D, Carletto A, Galvani S, Caramaschi P, Bambara LM, Corrocher R 1998. Effects of dietary fish oil and soy phosphatidylcholine on neutrophil fatty acid composition, superoxide release, and adhesion. Inflammation 22:381–391Google Scholar
  19. 19.
    Galban C, Montejo JC, Mesejo A, Marco P, Celaya S, Sanchez-Segura JM, Farre M, Bryg DJ (2000) An immune-enhancing enteral diet reduces mortality rate and episodes of bacteremia in septic intensive care unit patients. Crit Care Med 28:643–648PubMedGoogle Scholar
  20. 20.
    Kudsk KA, Minard G, Croce MA, Brown RO, Lowrey TS, Pritchard E, Dickerson RN, Fabian TC (1996) A randomized trial of isonitrogenous enteral diets after severe trauma. Ann Surg 224:531–543PubMedGoogle Scholar
  21. 21.
    Senkal M, Mumme A, Eickhoff U, Geier B, Späth G, Wulfert D, Joosten W, Frei A, Kemen M (1997) Early postoperative enteral immunonutrition: clinical outcome and cost-comparison analysis in surgical patients. Crit Care Med 25:1489–1496PubMedGoogle Scholar
  22. 22.
    Barton RG, Wells CL, Carlson A, Singh R, Sullivan JJ, Cerra FB (1991) Dietary omega-3 fatty acids decrease mortality and Kupffer cell prostaglandin E2 production in a rat model of chronic sepsis. J Trauma 31:768–774PubMedGoogle Scholar
  23. 23.
    Johnson III, JA, Griswold JA, Muakkassa FF (1993) Essential fatty acids influence survival in sepsis. J Trauma 35:128–131PubMedGoogle Scholar
  24. 24.
    Grimminger F, Wahn H, Mayer K, Kiss L, Walmrath D, Seeger W (1997) Impact of arachidonic versus eicosapentaenoic acid on exotonin-induced lung vascular leakage. Am J Respir Crit Care Med 155:513–519Google Scholar
  25. 25.
    Mayser P, Mayer K, Mahloudjian M, Benzing S, Krämer H-J, Schill W-B, Seeger W, Grimminger F (2002). A double-blind, randomized, placebo-controlled trial of n-3 vs. n-6 fatty acid based lipid infusion in atopic dermatitis. JPEN J Parenter Enteral Nutr 26:151–158PubMedGoogle Scholar
  26. 26.
    Grimminger F, Führer D, Papavassilis C, Schlotzer E, Mayer K, Heuer K, Kiss L, Walmrath D, Piberhofer D, Lübbecke F, Krämer HJ, Stevens J, Schütterle G, Seeger W (1993) Influence of intravenous n-3 lipid supplementation on fatty acid profiles and lipid mediator generation in a patient with severe ulcerative colitis. Eur J Clin Invest 23:706–715PubMedGoogle Scholar
  27. 27.
    Knaus WA, Draper EA, Wagner DPO, Zimmermann JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13:818–829PubMedGoogle Scholar
  28. 28.
    Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM consensus conference committee. American college of chest physicians/society of critical care medicine. Chest 101:1644–1655PubMedGoogle Scholar
  29. 29.
    Grimminger F, Becker G, Seeger W (1988) High yield enzymatic conversion of intravascular leukotriene A4 in blood-free perfused lungs. J Immunol 141:2431–2436PubMedGoogle Scholar
  30. 30.
    Hjorth R, Jonsson AK, Vretblad P (1981) A rapid method for purification of human granulocytes using Percoll: a comparison with dextran sedimentation. J Immunol Methods 43:95–101CrossRefPubMedGoogle Scholar
  31. 31.
    Grimminger F, Menger M, Becker G, Seeger W (1988) Potentiation of leukotriene production following sequestration of neutrophils in isolated lungs: indirect evidence for intercellular leukotriene A4 transfer. Blood 72:1687–1692PubMedGoogle Scholar
  32. 32.
    Nadeau M, Fruteau de Laclos B, Picard S, Braquet P, Corey EJ, Borgeat P (1984) Studies on leukotriene B4-oxidation in human leukocytes. Can J Biochem Cell Biol 62:1321–1326PubMedGoogle Scholar
  33. 33.
    Tessner TG, O'Flaherty JT, Wykle RL (1989) Stimulation of platelet-activating factor synthesis by a nonmetabolizable bioactive analog of platelet-activating factor and influence of arachidonic acid metabolites. J Biol Chem 264:4794–4799PubMedGoogle Scholar
  34. 34.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:753–757Google Scholar
  35. 35.
    Cohen HJ, Chovaniec ME (1978) Superoxide generation by digitonin-stimulated guinea-pig granulocytes. J Clin Invest 61:1081–1087PubMedGoogle Scholar
  36. 36.
    Berridge MJ, Dawson RM, Downes CP, Heslop JP, Irvine RF (1983) Changes in the level of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J 212:473–482PubMedGoogle Scholar
  37. 37.
    Krämer HJ, Stevens J, Seeger W (1993) Analysis of 2- and 3-series prostanoids by post-HPLC ELISA. Anal Biochem 214:535–543CrossRefPubMedGoogle Scholar
  38. 38.
    Pace-Asciak CR (1989) One-step rapid extrachive methylation of plasma nonesterified fatty acids for gas chromatographic analysis. J Lipid Res 30:451–454PubMedGoogle Scholar
  39. 39.
    Bursten SL, Federighi DA, Parsons P, Harris WE, Abraham E, Moore EE Jr, Moore FA, Bianco JA, Singer JW, Repine JE (1996) An increase in serum C18 unsaturated free fatty acids as a predictor of the development of acute respiratory distress syndrome. Crit Care Med 24:1129–1136Google Scholar
  40. 40.
    Robin APJ Askanazi J, Greenwood MRC, Carpentier YA, Gump FE, Kinney JM (1981) Lipoprotein lipase activity in surgical patients: influence of trauma and sepsis. Surgery 90:401–408PubMedGoogle Scholar
  41. 41.
    Weissman C (1990) The metabolic response to stress: an overview and update. Anesthesiology 73:308–327Google Scholar
  42. 42.
    Forse RA, Leibel R, Askanazi J, Hirsch J, Kinney JM (1987) Adrenergic control of adipocyte lipolysis in trauma and sepsis. Ann Surg 206:744–751PubMedGoogle Scholar
  43. 43.
    Spitzer JA, Leach GJ, Palmer MA (1980) Some metabolic and hormonal alterations in adipocytes isolated from septic dogs. Adv Shock Res 4:55–62PubMedGoogle Scholar
  44. 44.
    Kiuchi S, Matsuo N, Takeyama N, Tanaka T (1993) Accelerated hepatic lipid synthesis in fasted septic rats. Eur Surg Res 25:146–154PubMedGoogle Scholar
  45. 45.
    Winter BK, Fiskum G, Gallo LL (1995) Effects of L-carnitine on serum triglyceride and cytokine levels in rat models of cachexia and septic shock. Br J Cancer 72:1173–1179PubMedGoogle Scholar
  46. 46.
    Mela-Riker L, Bartos D, Vlessis AA, Widener L, Muller P, Trunkey DD (1992) Chronic hyperdynamic sepsis in the rat. Characterization of liver and muscle energy metabolism. Circ Shock 36:83–92PubMedGoogle Scholar
  47. 47.
    Guidet B, Piot O, Masliah J, Barakett V, Maury E, Bereziat G, Offenstadt G (1996) Secretory non-pancreatic phospholipase A2 in severe sepsis: relation to endotoxin, cytokines and thromboxane B2. Infection 24:103–108PubMedGoogle Scholar
  48. 48.
    Gavino VC, Gavino GR (1992) Adipose hormone-sensitive lipase preferentially releases polyunsaturated fatty acids from triglycerides. Lipids 27:950–954PubMedGoogle Scholar
  49. 49.
    Samra JS, Simpson EJ, Clark ML, Forster CD, Humphreys SM, Macdonald IA, Frayn KN (1996) Effects of epinephrine infusion on adipose tissue: interactions between blood flow and lipid metabolism. Am J Physiol 34:E834–E839Google Scholar
  50. 50.
    Jaume JC, Mendel CM, Frost PH, Greenspan FS, Laughton CW (1996) Extremely low doses of heparin release lipase activity into the plasma and can thereby cause artifactual elevations in the serum-free thyroxine concentration as measured by equilibrium dialysis. Thyroid 6:79–83PubMedGoogle Scholar
  51. 51.
    Hammarström S, Hamberg M, Samuelsson B, Duell EA, Stawiski M, Voorhees JJ (1975) Increased concentrations of non-esterified arachidonic acid, 12L-hydroxyeicosatetraenoic acid, prostaglandin E2 and prostaglandin F2alpha in the epidermis of psoriasis. Proc Natl Acad Sci USA 72:5130PubMedGoogle Scholar
  52. 52.
    Unterberg A, Wahl M, Hammersen F, Baethmann A (1987) Permeability and vasomotor response of cerebral vessels during exposure to arachidonic acid. Acta Neuropathol (Berl) 73:209Google Scholar
  53. 53.
    Ullrich V, Hecker G, Schatz-Mundig M (1991) Platelet-neutrophil interactions. In: Sies H, Flohé L, Zimmer G (eds) Molecular aspects of inflammation. Springer, Berlin Heidelberg New York, pp 59–71Google Scholar
  54. 54.
    Peterson J, Bihain BE, Bengtsson-Olivecrona G, Deckelbaum RJ, Carpentier YA, Olivecrona T (1990) Fatty acid control of lipoprotein lipase: a link between energy metabolism and lipid transport. Proc Natl Acad Sci USA 87:909PubMedGoogle Scholar
  55. 55.
    Rustan AC, Hustvedt BE, Drevon CA (1998) Postprandial decrease in plasma unesterified fatty acids during n-3 fatty acid feeding is not caused by accumulation of fatty acids in adipose tissue. Biochim Biophys Acta 1390:245–257CrossRefPubMedGoogle Scholar
  56. 56.
    Lovegrove JA, Brooks CN, Murphy MC, Gould BJ, Williams CM (1997) Use of manufactured foods enriched with fish oil as a means of increasing long-chain n-3 polyunsaturated fatty acid intake. Br J Nutr 78:223–236PubMedGoogle Scholar
  57. 57.
    Grimminger F, Scholz C, Bhakdi S, Seeger W (1991) Subhemolytic doses of Escherichia coli hemolysin evoke large quantities of lipoxygenase products in human neutrophils. J Biol Chem 266:14262–269PubMedGoogle Scholar
  58. 58.
    Grimminger F, Hattar K, Papavassilis C, Temmesfeld B, Csernok E, Gross WL, Seeger W, Sibelius U (1996) Neutrophil activation by anti-proteinase 3 antibodies in Wegener's granulomatosis: role of exogenous arachidonic acid and leukotriene B4 generation. J Exp Med 184:1567–1572PubMedGoogle Scholar
  59. 59.
    Solomkin JS, Brodt JK, Antrum RM (1985) Suppressed neutrophil oxidative activity in sepsis: a receptor-mediated regulatory response. J Surg Res 39:300–304PubMedGoogle Scholar
  60. 60.
    Vespasiano MC, Lewandoski JR, Zimmerman JJ (1993) Longitudinal analysis of neutrophil superoxide anion generation in patients with septic shock. Crit Care Med 21:666–672Google Scholar
  61. 61.
    Pascual C, Karzai W, Meier-Hellmann A, Bredle DL, Reinhart K (1997) A controlled study of leukocyte activation in septic patients. Intensive Care Med 23:743–748CrossRefPubMedGoogle Scholar
  62. 62.
    Burke PA, Canning CM, Chartier S, Lazo S, Daley J, Forse RA, Ritz J (1994) Alterations of Ca2+ signal transduction in critical ill patients. Surgery 116:378–387PubMedGoogle Scholar
  63. 63.
    Grimminger F, Mayser P (1995) Lipid Mediators, free fatty acids and psoriasis. Prostaglandins Leukot Essent Fatty Acids 521–15Google Scholar
  64. 64.
    Czermak BJ, Sarma V, Pierson CL, Warner RL, Huber-Lang M, Bless NM, Schmal H, Friedl HP, Ward PA (1999) Protective effects of C5a blockade in sepsis. Nat Med 5:788–792CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Konstantin Mayer
    • 1
  • Christine Fegbeutel
    • 1
  • Katja Hattar
    • 1
  • Ulf Sibelius
    • 1
  • Hans-Joachim Krämer
    • 1
  • Kai-Uwe Heuer
    • 1
  • Bettina Temmesfeld-Wollbrück
    • 1
  • Stephanie Gokorsch
    • 1
  • Friedrich Grimminger
    • 1
  • Werner Seeger
    • 1
  1. 1.Department of Internal MedicineJustus Liebig UniversityGiessenGermany

Personalised recommendations