Intensive Care Medicine

, Volume 29, Issue 7, pp 1113–1120 | Cite as

The impact of lactate-buffered high-volume hemofiltration on acid-base balance

  • Louise Cole
  • Rinaldo Bellomo
  • Ian Baldwin
  • Matthew Hayhoe
  • Claudio Ronco



To evaluate the effect of high-volume hemofiltration (HVHF) with lactate-buffered replacement fluids on acid-base balance.


Randomized crossover study.


Intensive Care Unit of Tertiary Medical Center


Ten patients with septic shock and acute renal failure.


Random allocation to 8 h of isovolemic high-volume hemofiltration (ultrafiltration rate: 6 l/h) or 8 h of isovolemic continuous venovenous hemofiltration (ultrafiltration rate: 1 l/h) with lactate-buffered replacement fluid with subsequent crossover.

Measurements and results

We measured blood gases, electrolytes, albumin, and lactate concentrations and completed quantitative biophysical analysis of acid-base balance changes. Before high-volume hemofiltration, patients had a slight metabolic alkalosis [pH: 7.42; base excess (BE) 2.4 mEq/l] despite hyperlactatemia (lactate: 2.51 mmol/l). After 2 h of high-volume hemofiltration, the mean lactate concentration increased to 7.30 mmol/l (p=0.0001). However, a decrease in chloride, strong ion difference effective, and strong ion gap (SIG) compensated for the effect of iatrogenic hyperlactatemia so that the pH only decreased to 7.39 (p=0.05) and the BE to −0.15 (p=0.001). After 6 h, despite persistent hyperlactatemia (7 mmol/l), the pH had returned to 7.42 and the BE to 2.45 mEq/l. These changes remained essentially stable at 8 h. Similar but less intense changes occurred during continuous venovenous hemofiltration.


HVHF with lactate-buffered replacement fluids induces iatrogenic hyperlactatemia. However, such hyperlactatemia only has a mild and transient acidifying effect. A decrease in chloride and strong ion difference effective and the removal of unmeasured anions all rapidly compensate for this effect.


Hemofiltration Lactate Lactic acidosis Chloride Acid-base physiology Continuous renal replacement therapy 


  1. 1.
    Davenport A. (1999) Anionic bases for continuous forms of renal replacement therapy (CRRT) in the ICU. Intensive Care Med 25:1209–1211CrossRefPubMedGoogle Scholar
  2. 2.
    Heering P, Ivens K, Thumer O, Morgera S, Heintzen M, Passlick-Deetjen J, Willers R, Strauer BE, Grabensee B (1999) The use of different buffers during continuous hemofiltration in critically ill patients with acute renal failure. Intensive Care Med 25:1244–1251PubMedGoogle Scholar
  3. 3.
    Heering P, Ivens K, Thumer O, Brause M, Grabensee B (1999) Acid-base balance and substitution fluid during continuous hemofiltration. Kidney Int 56 [Suppl 72]:37–40Google Scholar
  4. 4.
    Davenport A, Will EJ, Davison AM (1991) Hyperlactatemia and metabolic acidosis during hemofiltration using lactate buffered fluids. Nephron 59:461–465PubMedGoogle Scholar
  5. 5.
    Hilton PJ, Taylor J, Forni LG, Treacher DF (1998) Bicarbonate based hemofiltration in the management of acute renal failure with lactic acidosis. Q J Med 91:279–283CrossRefGoogle Scholar
  6. 6.
    Thomas AN, Guy JM, Kishen R, Bowles BMJ, Vadgama P (1997) Comparison of lactate and bicarbonate buffered hemofiltration fluids: use in critically ill patients. Nephrol Dial Transplant 12:1212–1217CrossRefPubMedGoogle Scholar
  7. 7.
    Davenport A, Worth DP, Will EJ (1988) Hypochloremic alkalosis after high flux continuous hemofiltration and continuous arterio-venous hemofiltration with dialysis. Lancet 1:658PubMedGoogle Scholar
  8. 8.
    Grootendorst, A.F., van Bommel, E.F.H., van der Hoven, B., van Leengoed LA, van Osta AL (1992) High volume hemofiltration improves right ventricular function in endotoxin-induced shock in the pig. Intensive Care Med 18:235–240PubMedGoogle Scholar
  9. 9.
    Grootendorst, A.F., van Bommel, E.F.H., Leengoed, L.A.M.G., van Zanten AR, Huipen HJ, Groeneveld AB (1993) Infusion of ultrafiltrate from endotoxemic pigs depresses myocardial performance in normal pigs. J Crit Care 8:161–169PubMedGoogle Scholar
  10. 10.
    Cole L, Bellomo R, Journois D, Davenport P, Baldwin I, Tipping P (2001) High volume hemofiltration in human septic shock. Intensive Care Med 27:978–986PubMedGoogle Scholar
  11. 11.
    Levraut J, Ciebera J-P, Jambou P, Ichai C, Labib Y, Grimaud D (1997) Effect of continuous veno-venous hemofiltration with dialysis on lactate clearance in critically ill patients. Crit Care Med 25:58–62PubMedGoogle Scholar
  12. 12.
    Bellomo R. Ronco C (1999) New paradigms in acid-base physiology. Current Opinion Crit Care 5:427–428CrossRefGoogle Scholar
  13. 13.
    Stewart PA (1983) Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 61:1442–1443Google Scholar
  14. 14.
    Figge J, Mydosh T, Fencl V (1992) Serum proteins and acid-base equilibria: a follow-up. J Lab Clin Med 120:713-719PubMedGoogle Scholar
  15. 15.
    Gilfix BM, Bique M, Magder S (1993) A physical chemical approach to the analysis of acid-base balance in the clinical setting. J Crit Care 81:187–197Google Scholar
  16. 16.
    American College of Chest Physicians/Society of Critical Care Medicine Consensus Committee (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 101:1658–1662Google Scholar
  17. 17.
    Ronco C, Bellomo R, Homel P, Brendolan A, Dan M, Piccinni P, La Greca G (2000) Effect of different doses in CVVH on outcomes of acute renal failure: a prospective randomized trial. Lancet 356:26–30PubMedGoogle Scholar
  18. 18.
    Liskaser F, Bellomo R, Hayhoe M, Story D, Poustie S, Smith B, Letis A, Bennett M (2000) Role of pump prime in the etiology and pathogenesis of cardiopulmonary bypass-associated acidosis. Anesthesiology 93:1170–1173PubMedGoogle Scholar
  19. 19.
    Hayhoe M, Bellomo R, Liu G, Kellum JA, McNicol L, Buxton B (1999) The etiology and pathogenesis of cardiopulmonary bypass-associated metabolic acidosis using polygelin pump prime. Intensive Care Med 25:680–685PubMedGoogle Scholar
  20. 20.
    Figge JF, Jabor A, Kazda A, Fencl V (1998) Anion gap and hypoalbuminemia. Crit Care Med 26:1807–1809PubMedGoogle Scholar
  21. 21.
    Siggaard-Andersen O, Fogh-Andersen N (1995) Base excess or buffer base (strong ion difference) as a measure of a non-respiratory acid-base disturbance. Acta Anesthesiol Scand 39:123–128Google Scholar
  22. 22.
    Cerosimo E, Molina PE, Abumrad NN (1998) Renal lactate metabolism and gluconeogenesis during insulin-induced hypoglycemia. Diabetes 47:1101–1106PubMedGoogle Scholar
  23. 23.
    Cerosimo E, Garlick P, Ferretti J (2000) Renal substrate metabolism and gluconeogenesis during hypoglycemia in humans. Diabetes 49:1186–1193PubMedGoogle Scholar
  24. 24.
    Guth H-J, Zschiesche M, Panzig E, Rudolph PE, Jager B, Kraatz G (1999) Which organic acids does hemofiltrate contain in the presence of acute renal failure? Int J Artif Organs 22:805–810Google Scholar
  25. 25.
    Kirschbaum B (1999) Sulfate regulation: native kidney vs dialysis. Int J Artif Organs 22:591–592Google Scholar
  26. 26.
    Nimmo GR, Mackenzie SJ, Walker S, Nicol M, Grant IS (1993) Acid-base responses to high volume hemofiltration in the critically ill. Nephrol Dial Transplant 8:854–857PubMedGoogle Scholar
  27. 27.
    Macias WL (1996) Choice of replacement fluid/dialysate anion in continuous renal replacement therapy. Am J Kidney Dis 28 [Suppl III]: 15–20Google Scholar
  28. 28.
    Morgera S, Heering P, Szentandrasi T, Manassa E, Heitzen M, Willers B, Passlick-Deetjen J, Grabensee B (1997) Comparison of a lactate versus acetate based hemofiltration replacement fluid in patients with acute renal failure. Ren Fail 19:155–164PubMedGoogle Scholar
  29. 29.
    Laude-Sharp M, Caroff M, Simard L, Pusineri C, Kazatchkine MD, Haeffner-Cavaillon N (1990) Induction of IL-1 during hemodialysis: transmembrane passage of intact endotoxins (LPS). Kidney Int 38:10089–1094Google Scholar
  30. 30.
    Honore PM, Jamez J, Wauthier M, Lee P, Dugernier T, Pirenne B, Hanique G, Matson JR (2000) Prospective evaluation of short-term, high-volume isovolemic hemofiltration on the hemodynamic course and outcome in patients with intractable circulatory failure resulting from septic shock. Crit Care Med 28:3581–3587Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Louise Cole
    • 1
  • Rinaldo Bellomo
    • 1
  • Ian Baldwin
    • 1
  • Matthew Hayhoe
    • 1
  • Claudio Ronco
    • 2
  1. 1.Department of Intensive CareAustin and Repatriation Medical CentreHeidelbergAustralia
  2. 2.Divisione di NefrologiaOspedale San BortoloVicenzaItaly

Personalised recommendations