Intensive Care Medicine

, Volume 29, Issue 9, pp 1560–1566 | Cite as

Effects of helium-oxygen on respiratory mechanics, gas exchange, and ventilation-perfusion relationships in a porcine model of stable methacholine-induced bronchospasm

  • Christine Watremez
  • Giuseppe Liistro
  • Marc deKock
  • Jean Roeseler
  • Thierry Clerbaux
  • Bruno Detry
  • Marc Reynaert
  • Pierre Gianello
  • Philippe JollietEmail author



To explore the consequences of helium/oxygen (He/O2) inhalation on respiratory mechanics, gas exchange, and ventilation-perfusion (VA/Q) relationships in an animal model of severe induced bronchospasm during mechanical ventilation.


Prospective, interventional study.


Experimental animal laboratory, university hospital.


Seven piglets were anesthetized, paralyzed, and mechanically ventilated, with all ventilator settings remaining constant throughout the protocol. Acute stable bronchospasm was obtained through continuous aerosolization of methacholine. Once steady-state was achieved, the animals successively breathed air/O2 and He/O2 (FIO2 0.3), or inversely, in random order. Measurements were taken at baseline, during bronchospasm, and after 30 min of He/O2 inhalation.


Bronchospasm increased lung peak inspiratory pressure (49±6.9 vs 18±1 cm H2O, P<0.001), lung resistance (22.7±1.5 vs 6.8±1.5 cm H2O.l−1.s, P<0.001), dynamic elastance (76±11.2 vs 22.8±4.1 cm H2O.l−1, P<0.001), and work of breathing (1.51±0.26 vs 0.47±0.08, P<0.001). Arterial pH decreased (7.47±0.06 vs 7.32±0.06, P<0.001), PaCO2 increased, and PaO2 decreased. Multiple inert gas elimination showed an absence of shunt, substantial increases in perfusion to low VA/Q regions, and dispersion of VA/Q distribution. He/O2 reduced lung resistance and work of breathing, and worsened hypercapnia and respiratory acidosis.


In this model, while He/O2 improved respiratory mechanics and reduced work of breathing, hypercapnia and respiratory acidosis increased. Close attention should be paid to monitoring arterial blood gases when He/O2 is used in mechanically ventilated acute severe asthma.


Asthma Methacholine Respiratory mechanics Ventilation/perfusion MIGET Helium 



This work was supported in part by the Fonds National Belge de la Recherche Scientifique, grant number 3.4506.02


  1. 1.
    Afessa B, Morales I, Cury JD (2001) Clinical course and outcome of patients admitted to the ICU for status asthmaticus. Chest 120:1616–1621PubMedGoogle Scholar
  2. 2.
    Adnet F, Dhissi G, Borron SW, Galinski M, Rayeh F, Cupa M, Pourriat JL, Lapostolle F (2001) Complication profile of adult asthmatics requiring paralysis during mechanical ventilation. Intensive Care Med 27:1729–1736CrossRefPubMedGoogle Scholar
  3. 3.
    Williams TJ, Tuxen DV, Scheinkestel GD, Czarny D, Bowes G (1992) Risk factors for morbidity in mechanically ventilated patients with acute severe asthma. Am Rev Respir Dis 146:607–615PubMedGoogle Scholar
  4. 4.
    Mansel JK, Stogner SW, Petrini MF, Norman JR (1990) Mechanical ventilation in patients with acute severe asthma. Am J Med 89:42–48PubMedGoogle Scholar
  5. 5.
    Rossi A, Polese G, Brandi G, Conti G (1995) Intrinsic positive end-expiratory pressure. Intensive Care Med 21:522–536PubMedGoogle Scholar
  6. 6.
    Tuxen D, Lane S (1987) The effects of ventilatory pattern on hyperinflation, airway pressures, and circulation in mechanical ventilation of patients with severe airflow obstruction. Am Rev Respir Dis 136:872–879PubMedGoogle Scholar
  7. 7.
    Papamoschou D (1995) Theoretical validation of the respiratory benefits of helium-oxygen mixtures. Respir Physiol 99:183–199CrossRefPubMedGoogle Scholar
  8. 8.
    Manthous CA, Hall JB, Caputo MA, Walter J, Klocksieben JM, Schmidt GA, Wood LD (1995) Heliox improves pulsus paradoxus and peak expiratory flow in nonintubated patients with severe asthma. Am J Respir Crit Care Med 151:310–314PubMedGoogle Scholar
  9. 9.
    Kudukis TM, Manthous CA, Schmidt GA, Hall JB, Wylam ME (1997) Inhaled helium-oxygen revisited: effect of inhaled helium-oxygen during the treatment of status asthmaticus in children. J Pediatr 130:217–224PubMedGoogle Scholar
  10. 10.
    Kass JE, Castriotta RJ (1995) Heliox therapy in acute severe asthma. Chest 107:757–760PubMedGoogle Scholar
  11. 11.
    Gluck EH, Onorato DJ, Castriotta R (1990) Helium-oxygen mixtures in intubated patients with status asthmaticus and respiratory acidosis. Chest 98:693–698PubMedGoogle Scholar
  12. 12.
    Orsini AJ, Stefano JL, Leef KH, Jasani M, Ginn A, Tice L, Nadkarni VM (1999) Heliox improves pulmonary mechanics in a pediatric porcine model of induced severe bronchospasm and independent lung mechanical ventilation. Crit Care 3:65–70CrossRefPubMedGoogle Scholar
  13. 13.
    Tassaux D, Jolliet P, Thouret JM, Roeseler J, Dorne R, Chevrolet JC (1999) Calibration of seven ICU ventilators for mechanical ventilation with helium-oxygen mixtures. Am J Respir Crit Care Med 160:22–32PubMedGoogle Scholar
  14. 14.
    Manier G, Guénard H, Castaing Y, Varène N (1983) Respiratory gas exchange under heliox breathing in COPD studied by the inert gas method. Bull Eur Physiopathol Resp 19:401–406Google Scholar
  15. 15.
    Thiriet M, Douguet D, Bonnet JC, Canonne C, Hatzfeld C (1979) The effect on gas mixing of a He-O2 mixture in chronic obstructive lung disease. Bull Eur Physiopathol Resp 15:1053–1068Google Scholar
  16. 16.
    Watremez C, Roeseler J, De Kock M, Clerbaux T, Detry B, Reynaert M, Gianello P, Jolliet P, Liistro G (2003) An improved porcine model of stable methacholine-induced bronchospasm. Intensive Care Med 29:119–125PubMedGoogle Scholar
  17. 17.
    Fry DL, Stead WW, Ebert RV, Lubin RI, Wells HS (1952) The measurement of pleural pressure and its relationship to intrathoracic pressure. J Lab Clin Med 40:664–673Google Scholar
  18. 18.
    Baydur A, Behrakis PK, Zin WA, Milic-Emili G (1982) A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis 732–739Google Scholar
  19. 19.
    Lauzon AM, Bates JH (1991) Estimation of time-varying respiratory mechanical parameters by recursive least-squares. J Appl Physiol 71:1159–1165Google Scholar
  20. 20.
    Rossi A, Gottfried SB, Zocchi L, Higgs BD, Lennox S, Calverley A, Begin P, Grassino A, Milic-Emili J (1985) Measurement of static compliance of the total respiratory system in patients with acute respiratory failure during mechanical ventilation. The effect of intrinsic positive end-expiratory pressure. Am Rev Respir Dis 131:672–677PubMedGoogle Scholar
  21. 21.
    Sassoon CS, Mahutte CK (1998) Work of breathing during mechanical ventilation. In: Marini J, Slutsky A (ed) Physiological basis of ventilatory support. Dekker, New York, pp 261–310Google Scholar
  22. 22.
    Wagner PD, Saltzmann HA, West JB (1974) Measurement of continuous distributions of ventilation-perfusion ratios: theory. J Appl Physiol 36:588–599Google Scholar
  23. 23.
    Evans JW, Wagner PD (1977) Limits on VA/Q distributions from analysis of experimental inert gas elimination. J Appl Physiol 42:889–898Google Scholar
  24. 24.
    Breen PH, Becker LJ, Ruygrok P, Mayers I, Long GR, Leff A, Wood LD (1987) Canine bronchoconstriction, gas trapping, and hypoxia with methacholine. J Appl Physiol 63:262–269Google Scholar
  25. 25.
    Echazaretta AL, Gomez FP, Ribas J, Sala E, Barbera JA, Roca J, Rodriguez-Roisin R (1991) Pulmonary gas exchange responses to histamine and methacholine challenges in mild asthma. Eur Respir J 17:609–614CrossRefGoogle Scholar
  26. 26.
    Rodriguez-Roisin R, Ballester E, Roca J, Torres A, Wagner PD (1989) Mechanisms of hypoxemia in patients with severe status asthmaticus requiring mechanical ventilation. Am Rev Respir Dis 139:732–739PubMedGoogle Scholar
  27. 27.
    Rodriguez-Roisin R, Ferrer A, Navajas D, Agusti AG, Wagner PD, Roca J (1991) Ventilation-perfusion mismatch after methacholine challenge in patients with mild bronchial asthma. Am Rev Respir Dis 144:88–94PubMedGoogle Scholar
  28. 28.
    Rubinfeld AR, Wagner PD, West JB (1978) Gas exchange during acute experimental canine asthma. Am Rev Respir Dis 118:525–536Google Scholar
  29. 29.
    Martin JG, Shore SA, Engel LA (1983) Mechanical load and inspiratory muscle action during induced asthma. Am Rev Respir Dis 128:455–460PubMedGoogle Scholar
  30. 30.
    Wheatley JR, West S, Cala SJ, Engel GA (1990) The effect of hyperinflation on respiratory muscle work in acute induced asthma. Eur Respir J 3:625–632PubMedGoogle Scholar
  31. 31.
    O'Grady K, Doyle DJ, Irish J, Gullane P (1997) Biophysics of airflow within the airway: a review. J Otolaryngol 26:123–128PubMedGoogle Scholar
  32. 32.
    Otis AB, Bembower WC (1949) Effects of gas density on resistance to respiratory gas flow in man. J Appl Physiol 2:300–306Google Scholar
  33. 33.
    Grapé B, Channin E, Griffin P (1960) The effect of helium and oxygen mixtures on pulmonary resistances in emphysema. Am Rev Respir Dis 81:823–829Google Scholar
  34. 34.
    Connors AF, McCaffee DR, Gray BA (1981) Effect of inspiratory flow rate on gas exchange during mechanical ventilation. Am Rev Respir Dis 124:537–543PubMedGoogle Scholar
  35. 35.
    Tassaux D, Jolliet P, Roeseler J, Chevrolet JC (2000) Effects of helium-oxygen on intrinsic positive end-expiratory pressure in intubated and mechanically ventilated patients with severe chronic obstructive pulmonary disease. Crit Care Med 28:2721–2728PubMedGoogle Scholar
  36. 36.
    Rodeberg DA, Easter AJ, Washam MA, Housinger TA, Greenhalgh DG, Warden GD (1995) Use of a helium-oxygen mixture in the treatment of postextubation stridor in pediatric patients with burns. J Burn Care Rehabil 16:476–490PubMedGoogle Scholar
  37. 37.
    Rodriguez-Roisin R (1997) Acute severe asthma: pathophysiology and pathobiology of gas exchange abnormalities. Eur Respir J 10:1359–1371PubMedGoogle Scholar
  38. 38.
    Schulz H, Schulz A, Eder G, Heyder J (1995) Influence of gas composition on convective and diffusive intrapulmonary gas transport. Exp Lung Res 21:853–876PubMedGoogle Scholar
  39. 39.
    Erickson BK, Seaman J, Kubo K, Hiraga A, Kai M, Yamaya Y, Wagner PD (1994) Mechanism of reduction in alveolar-arterial PO2 difference by helium breathing in the exercising horse. J Appl Physiol 76:2794–2801PubMedGoogle Scholar
  40. 40.
    Jolliet P, Tassaux D, Thouret JM, Chevrolet JC (1999) Beneficial effects of helium-oxygen vs. air-oxygen non-invasive pressure support in decompensated COPD patients. Crit Care Med 27:2422–2429PubMedGoogle Scholar
  41. 41.
    Schaeffer EM, Pohlman A, Morgan S, Hall JB (1999) Oxygenation in status asthmaticus improves during ventilation with helium-oxygen. Crit Care Med 27:2666–2670PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Christine Watremez
    • 2
  • Giuseppe Liistro
    • 3
  • Marc deKock
    • 2
  • Jean Roeseler
    • 4
  • Thierry Clerbaux
    • 3
  • Bruno Detry
    • 3
  • Marc Reynaert
    • 4
  • Pierre Gianello
    • 5
  • Philippe Jolliet
    • 1
    Email author
  1. 1.Division des soins intensifs de MédecineHôpital Cantonal UniversitaireGeneva 14Switzerland
  2. 2.Division of AnesthesiologyClinique Universitaire St.-LucBrusselsBelgium
  3. 3.Division of PneumologyClinique Universitaire St.-LucBrusselsBelgium
  4. 4.Department of Emergency and Intensive CareClinique Universitaire St.-LucBrusselsBelgium
  5. 5.Laboratory of Experimental SurgeryClinique Universitaire St.-LucBrusselsBelgium

Personalised recommendations