Advertisement

Trainingsmethoden und Trainierbarkeit

  • M. BehringerEmail author
  • C. Skutschik
  • A. Franz
Leitthema
  • 48 Downloads

Zusammenfassung

Hintergrund

Sowohl in der Rehabilitation als auch in der Prähabilitation stellt sich die Frage nach möglichst effektiven und für alle Patientengruppen geeigneten Trainingsmethoden, um positive Adaptationen der Muskulatur und Knochen zu erzielen. Neben mechanischem Stress scheint auch ein erhöhter metabolischer Stress, ausgelöst durch eine reduzierte Blutversorgung der Muskulatur, zu vielversprechenden Ergebnissen zu führen.

Fragestellung

Darstellung der Wirkmechanismen von klassischem Krafttraining und Anwendungsmöglichkeiten von Blood-Flow-Restriction-Training in medizinischen Bereich.

Material und Methoden

Grundlagen- und Fachliteratur

Ergebnisse und Diskussion

Regelmäßig applizierte hohe mechanische Belastungen sind geeignet, um Steigerungen der Muskelkraft und -masse sowie der Knochenmineralisation zu induzieren. Grundsätzlich ist die Trainierbarkeit dieser Gewebe über die gesamte Lebensspanne gegeben, wenngleich die Adaptation der Muskelmasse im präpubertären und im höheren Lebensalter reduziert ist. Als Trainingsmethode zur Applikation dieser Reizqualität (mechanischer Stress) ist insbesondere das klassische Krafttraining geeignet. Seit einigen Jahren mehren sich jedoch die Erkenntnisse darüber, dass auch niedrigintensive Belastungen, die mit einem metabolischen Stress einhergehen, dazu in der Lage sind, hypertrophe Effekte und Kraftsteigerungen der Muskulatur zu erzielen. Diese Beobachtung ist insbesondere für die Zielgruppen interessant, deren mechanische Belastbarkeit des muskuloskelettalen Systems herabgesetzt ist. Als Trainingsmethode zur Applikation dieser Reizqualität (metabolischer Stress) eignet sich besonders das sogenannte Blood-Flow-Restriction(BFR)-Training. Die Datenlage zur Effektivität niedrigintensiver Belastungsprotokolle auf die Knochenstruktur ist bislang noch unzureichend. Hier bedarf es weiterer Forschung, um evidenzbasierte Empfehlungen aussprechen zu können.

Schlüsselwörter

Adaptation, physiologische Mechanischer Stress Metabolischer Stress Muskelkraft Krafttraining 

Abkürzungen

1RM

Einwiederholungsmaximum

ACSM

American College of Sports Medicine

AKT

Aktivierte Proteinkinase

BFR

Blood Flow Restriction

GH

Wachstumshormon

ISS

Internationale Raumstation

MAPK

Mitogenaktivierte Proteinkinasen

mTOR

„Mechanistic target of Rapamycin“

PI3K

Phosphoinositid-3-Kinase

Training methods and trainability

Abstract

Background

The need for effective training methods for positive adaptations in muscle strength and bone mineralization, suitable for all groups of patients, arises in both rehabilitation and pre-habilitation. In addition to mechanical stress, an increased metabolic stress, by means of reduced blood supply of the muscle, seems to induce positive adaptations as well.

Objectives

Description of the effects of resistance training and opportunities of blood-flow restriction training in a clinical setting.

Methods

Key and specialized literature

Results

Regularly applied high mechanical loads are suitable to induce increases in muscle strength and mass as well as bone mineralization. In principle, the trainability of these tissues is given over the entire life span, although the adaptation of the muscle mass is reduced in the prepubertal and later stages of life. Classic strength training is particularly suitable as a training method to apply this stimulus quality (mechanical stress). For some years now, however, there has been increasing evidence that even low-intensity resistance training associated with metabolic stress is capable of producing hypertrophic effects and increasing muscle strength. This observation is particularly interesting for target groups whose mechanical capacity of the musculoskeletal system is reduced. Blood-flow-restriction training is particularly suitable as a training method for the application of this stimulus quality (metabolic stress). The data available on the effectiveness of low-intensity stress protocols on bone structure is still insufficient. Further research is needed to make evidence-based recommendations.

Keywords

Adaptation, physiological Mechanical stress Metabolic stress Muscle strength Strength training 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Behringer, C. Skutschik und A. Franz geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    American College of Sports Medicine (2009) American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 41(3):687–708.  https://doi.org/10.1249/MSS.0b013e3181915670 CrossRefGoogle Scholar
  2. 2.
    Behringer M, Vom Heede A, Jedlicka D, Mester J (2011) Medizinische und trainingswissenschaftliche Aspekte eines Krafttrainings im Kindes- und Jugendalter. Sportunterricht 60(4):108–112Google Scholar
  3. 3.
    Behringer M, Heinke L, Leyendecker J, Mester J (2018) Effects of blood flow restriction during moderate-intensity eccentric knee extensions. J Physiol Sci 68(5):589–599.  https://doi.org/10.1007/s12576-017-0568-2 CrossRefPubMedGoogle Scholar
  4. 4.
    Bemben DA, Bemben MG (2011) Dose-response effect of 40 weeks of resistance training on bone mineral density in older adults. Osteoporos Int 22(1):179–186.  https://doi.org/10.1007/s00198-010-1182-9 CrossRefPubMedGoogle Scholar
  5. 5.
    Benedetti MG, Furlini G, Zati A, Mauro LG (2018) The effectiveness of physical exercise on bone density in osteoporotic patients. Biomed Res Int.  https://doi.org/10.1155/2018/4840531 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bittar ST, Pfeiffer PS, Santos HH, Cirilo-Sousa MS (2018) Effects of blood flow restriction exercises on bone metabolism: a systematic review. Clin Physiol Funct Imaging.  https://doi.org/10.1111/cpf.12512 CrossRefPubMedGoogle Scholar
  7. 7.
    Brand RA (2010) Biographical sketch: Julius Wolff, 1836–1902. Clin Orthop Relat Res 468(4):1047–1049.  https://doi.org/10.1007/s11999-010-1258-z CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Burd NA, West DWD, Staples AW, Atherton PJ, Baker JM, Moore DR, Holwerda AM, Parise G, Rennie MJ, Baker SK, Phillips SM (2010) Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. Plos One 5(8):e12033.  https://doi.org/10.1371/journal.pone.0012033 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Centner C, Wiegel P, Gollhofer A, König D (2019) Effects of blood flow restriction training on muscular strength and hypertrophy in older individuals: a systematic review and meta-analysis. Sports Med 49(1):95–108.  https://doi.org/10.1007/s40279-018-0994-1 CrossRefPubMedGoogle Scholar
  10. 10.
    Faigenbaum AD, Kraemer WJ, Blimkie CJR, Jeffreys I, Micheli LJ, Nitka M, Rowland TW (2009) Youth resistance training: updated position statement paper from the national strength and conditioning association. J Strength Cond Res 23(5):60–79.  https://doi.org/10.1519/JSC.0b013e31819df407 CrossRefGoogle Scholar
  11. 11.
    Frost HM (2001) From Wolff’s law to the Utah paradigm: insights about bone physiology and its clinical applications. Anat Rec 262(4):398–419.  https://doi.org/10.1002/ar.1049 CrossRefPubMedGoogle Scholar
  12. 12.
    Goto K, Ishii N, Kizuka T, Takamatsu K (2005) The impact of metabolic stress on hormonal responses and muscular adaptations. Med Sci Sports Exerc 37(6):955–963PubMedGoogle Scholar
  13. 13.
    Granacher U, Goesele A, Roggo K, Wischer T, Fischer S, Zuerny C, Gollhofer A, Kriemler S (2011) Effects and mechanisms of strength training in children. Int J Sports Med 32(5):357–364.  https://doi.org/10.1055/s-0031-1271677 CrossRefPubMedGoogle Scholar
  14. 14.
    Jessee MB, Buckner SL, Mouser JG, Mattocks KT, Dankel SJ, Abe T, Bell ZW, Bentley JP, Loenneke JP (2018) Muscle adaptations to high-load training and very low-load training with and without blood flow restriction. Front Physiol 9:1448.  https://doi.org/10.3389/fphys.2018.01448 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kerschan-Schindl K (2012) Das Mechanostat-Modell. J Minerstoffwechs 19(4):159–162Google Scholar
  16. 16.
    Mi LY, Basu M, Fritton SP, Cowin SC (2005) Analysis of avian bone response to mechanical loading. Part two: development of a computational connected cellular network to study bone intercellular communication. Biomech Model Mechanobiol 4(2-3):132–146.  https://doi.org/10.1007/s10237-004-0066-3 CrossRefPubMedGoogle Scholar
  17. 17.
    Morton RW, Oikawa SY, Wavell CG, Mazara N, McGlory C, Quadrilatero J, Baechler BL, Baker SK, Phillips SM (2016) Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol 121(1):129–138.  https://doi.org/10.1152/japplphysiol.00154.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Nicholson VP, McKean MR, Slater GJ, Kerr A, Burkett BJ (2015) Low-load very high-repetition resistance training attenuates bone loss at the lumbar spine in active post-menopausal women. Calcif Tissue Int 96(6):490–499.  https://doi.org/10.1007/s00223-015-9976-6 CrossRefPubMedGoogle Scholar
  19. 19.
    Olney RC (2003) Regulation of bone mass by growth hormone. Med Pediatr Oncol 41(3):228–234.  https://doi.org/10.1002/mpo.10342 CrossRefPubMedGoogle Scholar
  20. 20.
    Peterson MD, Rhea MR, Alvar BA (2005) Applications of the dose-response for muscular strength development: a review of meta-analytic efficacy and reliability for designing training prescription. J Strength Cond Res 19(4):950–958.  https://doi.org/10.1519/R-16874.1 CrossRefPubMedGoogle Scholar
  21. 21.
    Peterson MD, Rhea MR, Sen A, Gordon PM (2010) Resistance exercise for muscular strength in older adults: a meta-analysis. Ageing Res Rev 9(3):226–237.  https://doi.org/10.1016/j.arr.2010.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Peterson MD, Sen A, Gordon PM (2011) Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Med Sci Sports Exerc 43(2):249–258.  https://doi.org/10.1249/MSS.0b013e3181eb6265 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Rindom E, Vissing K (2016) Mechanosensitive molecular networks involved in transducing resistance exercise-signals into muscle protein accretion. Front Physiol 7:547.  https://doi.org/10.3389/fphys.2016.00547 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Roig M, O’Brien K, Kirk G, Murray R, McKinnon P, Shadgan B, Reid WD (2009) The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta-analysis. Br J Sports Med 43(8):556–568.  https://doi.org/10.1136/bjsm.2008.051417 CrossRefPubMedGoogle Scholar
  25. 25.
    Saxon LK, Robling AG, Alam I, Turner CH (2005) Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off. Bone 36(3):454–464.  https://doi.org/10.1016/j.bone.2004.12.001 CrossRefPubMedGoogle Scholar
  26. 26.
    Schliess F, Richter L, Vom Dahl S, Häussinger D (2006) Cell hydration and mTOR-dependent signalling. Acta Physiol (Oxf) 187(1-2):223–229.  https://doi.org/10.1111/j.1748-1716.2006.01547.x CrossRefGoogle Scholar
  27. 27.
    Schoenfeld BJ (2010) The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res 24(10):2857–2872. https://doi.org/10.1519/JSC.0b013e3181e840 f3CrossRefGoogle Scholar
  28. 28.
    Schoenfeld BJ, Contreras B (2014) The muscle pump. Strength Cond J.  https://doi.org/10.1519/SSC.0000000000000021 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sopher AB, Fennoy I, Oberfield SE (2015) An update on childhood bone health: mineral accrual, assessment and treatment. Curr Opin Endocrinol Diabetes Obes 22(1):35–40.  https://doi.org/10.1097/MED.0000000000000124 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Toigo M, Boutellier U (2006) New fundamental resistance exercise determinants of molecular and cellular muscle adaptations. Eur J Appl Physiol 97(6):643–663.  https://doi.org/10.1007/s00421-006-0238-1 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Sportmedizin und Leistungsphysiologie, Institut für SportwissenschaftenGoethe Universität FrankfurtFrankfurtDeutschland
  2. 2.Abteilung Prähabilitation und MuskelforschungATOS Orthoparc Klinik KölnKölnDeutschland

Personalised recommendations