Advertisement

Trends und Verletzungen im Radsport: schneller, weiter, E‑Bike?

  • J. Hinder
  • M. JägerEmail author
Leitthema
  • 68 Downloads

Zusammenfassung

Technische Neuerungen (z. B. Werkstoff Carbon, Scheibenbremsen, Stoßdämpfer, Schaltgetriebe) und ein verändertes Freizeitverhalten haben in der letzten Dekade zu erheblichen Veränderungen im Radsport geführt. Während der ambitionierte Freizeitfahrer noch vor wenigen Jahrzehnten primär am Erholungswert in der Natur beim Radfahren interessiert war, dominieren bei mittlerweile zahlreichen Freizeitsportler aller Altersklassen Leistungsanspruch und der Wunsch nach permanenter Selbstoptimierung. Gleichzeitig haben sich die Hersteller dem unterschiedlichen Anforderungsprofil ihrer Kunden angepasst: Neben den beiden traditionellen extremen Radformen, dem Rennrad und dem Mountainbike, existiert mittlerweile eine Vielzahl von Zwischen- und Ausführungsstufen: Trekking, Cyclocross, Gravel, Fullsuspension, Singletrail, Hardtail, Downhill, Fatbike etc. Für Radbegeisterte, die aufgrund individueller Leistungseinschränkungen nicht mehr in der Lage sind, ihrem Anspruch nachzukommen, wurden vor wenigen Jahren elektrogetriebene Räder (E-Bikes, Pedelecs) auf den Markt gebracht. Diese erfreuen sich zunehmender Beliebtheit, führen jedoch zu einem Anstieg an Unfällen und Verletzungen. Der vorliegende Beitrag fasst die wesentlichen sportmedizinisch relevanten Auswirkungen dieser Entwicklungen zusammen.

Schlüsselwörter

Radsport E‑Bike Sportverletzung Übungstraining Sportmedizin 

Abkürzungen

Avg.

„Average power“

DMB

Downhill Mountainbiking

HIU

„High-intensity ultraendurance“

HF

Herzfrequenz

IANS

Individuelle anaerobe Schwelle

MTB

Mountainbike

RPE

„Received perception of exertion“

Rpm

„Revolutions per minute“ (Trittfrequenz)

W

Watt

Current trends and injuries in cycling: faster, further, e-bike?

Abstract

During the past decade, technical innovations (e.g., carbon as a new material, disk brakes, hydraulic shock absorbers, electric transmissions) and lifestyle changes have significantly influenced recreational and professional cycling. In contrast to the past, where ambitious leisure cyclists were primarily interested in the recreational value of nature and landscape, cyclists of all ages are nowadays increasingly focused on performance and self-optimization. Simultaneously, manufacturers have adapted to differing customer requirements: besides the traditional extremities of road and mountain bikes, many specialized models have been designed for special applications: trekking, cyclocross, gravel, full-suspension, single-track, hardtail, downhill, fatbike, etc. For biking fans who are no longer able to meet their own demands due to individual physical restrictions or defined health problems, electric-assist bikes (pedelecs or “e-bikes”) were recently introduced. While these are becoming increasingly popular, they have also increased the number of accidents and injuries. The current work provides an update on relevant sport medical and orthopaedic challenges brought on by these developments in cycling.

Keywords

Bicycling Electric bicycle Sports injuries Exercise training Sports medicine 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. Hinder und M. Jäger geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    UDV (2016) Typische Unfälle zwischen Pkw und Radfahrern. 1–20. https://udv.de/system/files_force/tx_udvpublications/fb_21_ab_pkw_rf.pdf
  2. 2.
    Aitken SA, Biant LC, Court-Brown CM (2011) Recreational mountain biking injuries. Emerg Med J 28:274–279CrossRefGoogle Scholar
  3. 3.
    Ansari M, Nourian R, Khodaee M (2017) Mountain biking injuries. Curr Sports Med Rep 16:404–412CrossRefGoogle Scholar
  4. 4.
    Awad MA, Gaither TW, Murphy GP et al (2018) Cycling, and male sexual and urinary function: results from a large, multinational, cross-sectional study. J Urol 199:798–804CrossRefGoogle Scholar
  5. 5.
    Barclay A, Paul L, Macfarlane N et al (2019) The effect of cycling using active-passive trainers on spasticity, cardiovascular fitness, function and quality of life in people with moderate to severe Multiple Sclerosis (MS); a feasibility study. Mult Scler Relat Disord 34:128–134CrossRefGoogle Scholar
  6. 6.
    Becker J, Runer A, Neunhauserer D et al (2013) A prospective study of downhill mountain biking injuries. Br J Sports Med 47:458–462CrossRefGoogle Scholar
  7. 7.
    Belden J, Mansoor MM, Hellum A et al (2019) How vision governs the collective behaviour of dense cycling pelotons. J R Soc Interface 16:20190197CrossRefGoogle Scholar
  8. 8.
    Bessa A, Nissenbaum M, Monteiro A et al (2008) High-intensity ultraendurance promotes early release of muscle injury markers. Br J Sports Med 42:889–893CrossRefGoogle Scholar
  9. 9.
    Binnig D (2019) Unfallrisiko. Rennrad 8:12–13Google Scholar
  10. 10.
    Borg G (2004) Anstrengungsempfinden und körperliche Aktivität. Dtsch Ärzteblatt 101:1016–1021Google Scholar
  11. 11.
    Breedt M, Janse Van Rensburg DC, Fletcher L et al (2017) The Injury and Illness Profile of Male and Female Participants in a 94.7 km Cycle Race: A Cross-Sectional Study. Clin J Sport Med.  https://doi.org/10.1097/JSM.0000000000000517 CrossRefPubMedGoogle Scholar
  12. 12.
    Carnall D (2000) Cycling and health promotion. A safer, slower urban road environment is the key. BMJ 320:888CrossRefGoogle Scholar
  13. 13.
    Fergus KB, Sanford T, Vargo J et al (2019) Trends in bicycle-related injuries, hospital admissions, and deaths in the USA 1997–2013. Traffic Inj Prev 20:550–555CrossRefGoogle Scholar
  14. 14.
    Fruhen LS, Rossen I, Griffin MA (2019) The factors shaping car drivers’ attitudes towards cyclist and their impact on behaviour. Accid Anal Prev 123:235–242CrossRefGoogle Scholar
  15. 15.
    Haeberle HS, Navarro SM, Power EJ et al (2018) Prevalence and epidemiology of injuries among elite cyclists in the Tour de France. Orthop J Sports Med 6:2325967118793392CrossRefGoogle Scholar
  16. 16.
    Hotfiel T, Mayer I, Huettel M et al (2019) Accelerating recovery from exercise-induced muscle injuries in triathletes: considerations for olympic distance races. Sports (Basel).  https://doi.org/10.3390/sports7060143 CrossRefGoogle Scholar
  17. 17.
    Lion A, Vibert D, Bosser G et al (2016) Vertigo in downhill mountain biking and road cycling. Eur J Sport Sci 16:135–140CrossRefGoogle Scholar
  18. 18.
    Mcgrath TM, Yehl MA (2012) Injury and illness in mountain bicycle stage racing: experience from the Trans-Sylvania Mountain Bike Epic Race. Wilderness Environ Med 23:356–359CrossRefGoogle Scholar
  19. 19.
    Menard M, Domalain M, Decatoire A et al (2018) Influence of saddle setback on knee joint forces in cycling. Sports Biomech.  https://doi.org/10.1080/14763141.2018.1466906 CrossRefPubMedGoogle Scholar
  20. 20.
    Menard M, Domalain M, Decatoire A et al (2016) Influence of saddle setback on pedalling technique effectiveness in cycling. Sports Biomech 15:462–472CrossRefGoogle Scholar
  21. 21.
    Meuleners LB, Stevenson M, Fraser M et al (2019) Safer cycling and the urban road environment: a case control study. Accid Anal Prev 129:342–349CrossRefGoogle Scholar
  22. 22.
    Muyor JM (2015) The influence of handlebar-hands position on spinal posture in professional cyclists. J Back Musculoskelet Rehabil 28:167–172CrossRefGoogle Scholar
  23. 23.
    Olivier J, Boufous S, Grzebieta R (2019) The impact of bicycle helmet legislation on cycling fatalities in Australia. Int J Epidemiol.  https://doi.org/10.1093/ije/dyz003 CrossRefPubMedGoogle Scholar
  24. 24.
    Peterman JE, Morris KL, Kram R et al (2016) Pedelecs as a physically active transportation mode. Eur J Appl Physiol 116:1565–1573CrossRefGoogle Scholar
  25. 25.
    Priego Quesada JI, Kerr ZY, Bertucci WM et al (2019) The association of bike fitting with injury, comfort, and pain during cycling: an international retrospective survey. Eur J Sport Sci 19:842–849CrossRefGoogle Scholar
  26. 26.
    Singh N, Joe N, Amey J et al (2019) Cycling-related injuries and cycling promotion: a trauma service perspective. N Z Med J 132:41–48PubMedGoogle Scholar
  27. 27.
    Slane J, Timmerman M, Ploeg HL et al (2011) The influence of glove and hand position on pressure over the ulnar nerve during cycling. Clin Biomech 26:642–648CrossRefGoogle Scholar
  28. 28.
    Smith A, Zucker S, Llado-Farrulla M et al (2019) Bicycle lanes: Are we running in circles or cycling in the right direction? J Trauma Acute Care Surg.  https://doi.org/10.1097/TA.0000000000002328 CrossRefPubMedGoogle Scholar
  29. 29.
    Stevenson M, Johnson M, Oxley J et al (2015) Safer cycling in the urban road environment: study approach and protocols guiding an Australian study. Inj Prev 21:e3CrossRefGoogle Scholar
  30. 30.
    Stoop R, Hohenauer E, Vetsch T et al (2019) Acute injuries in male elite and amateur mountain bikers: results of a survey. J Sports Sci Med 18:207–212PubMedPubMedCentralGoogle Scholar
  31. 31.
    Twisk D, Vlakveld W (2019) Social environment versus cycling competency predicting risk-taking in 11- to 13-year-old cyclists in The Netherlands. Traffic Inj Prev.  https://doi.org/10.1080/15389588.2019.1613533 CrossRefPubMedGoogle Scholar
  32. 32.
    Usamentiaga R, Ibarra-Castanedo C, Klein M et al (2017) Nondestructive evaluation of carbon fiber bicycle frames using infrared thermography. Sensors (Basel).  https://doi.org/10.3390/s17112679 CrossRefGoogle Scholar
  33. 33.
    Varnild A, Tillgren P, Larm P (2019) Factors related to the increasing number of seriously injured cyclists and pedestrians in a Swedish urban region 2003–17. J Public Health.  https://doi.org/10.1093/pubmed/fdz064 CrossRefGoogle Scholar
  34. 34.
    Wainwright TW, Immins T, Middleton RG (2016) A cycling and education programme for the treatment of hip osteoarthritis: a quality improvement study. Int J Orthop Trauma Nurs 23:14–24CrossRefGoogle Scholar
  35. 35.
    Wang Y, Liang L, Wang D et al (2019) Cycling with low saddle height is related to increased knee adduction moments in healthy recreational cyclists. Eur J Sport Sci.  https://doi.org/10.1080/17461391.2019.1635651 CrossRefPubMedGoogle Scholar
  36. 36.
    Woodcock J, Abbas A, Ullrich A et al (2018) Development of the Impacts of Cycling Tool (ICT): a modelling study and web tool for evaluating health and environmental impacts of cycling uptake. PLoS Med 15:e1002622CrossRefGoogle Scholar
  37. 37.
    Wu X, Xiao W, Deng C et al (2019) Unsafe riding behaviors of shared-bicycle riders in urban China: A retrospective survey. Accid Anal Prev 131:1–7CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für SportmedizinUniversität MünsterMünsterDeutschland
  2. 2.Lehrstuhl für Orthopädie & Unfallchirurgie, Universität Duisburg-EssenKlinik für Orthopädie, Unfall- und Wiederherstellungschirurgie, St. Marien-Hospital Mülheim a.d.R. (Contilia)Mülheim/RuhrDeutschland

Personalised recommendations