Advertisement

Der Orthopäde

, Volume 49, Issue 1, pp 10–17 | Cite as

Bedeutung des tibialen Slopes in der Knieendoprothetik

  • Silvan WittenbergEmail author
  • Ufuk Sentuerk
  • Lisa Renner
  • Claude Weynandt
  • Carsten F. Perka
  • Clemens Gwinner
Übersichten

Zusammenfassung

Das funktionelle Zusammenspiel von knöchernen und ligamentären Strukturen ist für die postoperative Biomechanik und Standzeit von Kniegelenkendoprothesen von herausragender Bedeutung. Trotz aller technischen Fortschritte und wissenschaftlichen Bemühungen ist aktuell unzureichend geklärt, welche Bedeutung der komplexen Anatomie des Tibiaplateaus und insbesondere ihrer dorsalen Inklination (tibialer Slope) in der Knieendoprothetik zugeschrieben werden soll. Vor diesem Hintergrund erfolgte die Auswertung, kritische Auseinandersetzung und Darstellung der gegenwärtigen wissenschaftlichen Datenlage. Der tibiale Slope nimmt Einfluss auf den postoperativen Bewegungsumfang, die Funktion des Streckapparat sowie Abrieb, Lockerung und Instabilität der Kniegelenkendoprothese. Die Literaturlage ist jedoch äußerst heterogen und Empfehlungen für einen optimalen tibialen Slope reichen von 0° bis 10°. Allerdings gibt es in den letzten Jahren zunehmend Bestrebungen, den präoperativen tibialen Slope zu rekonstruieren. Allen Studien ist gemein, dass bereits eine präoperative Auseinandersetzung mit dem tibialen Slope empfohlen wird.

Schlüsselwörter

Bewegungsumfang Gelenkinstabilität Prothesenlockerung Prothesenüberleben Biomechanik 

Abkürzungen

ATC

„Anterior tibial cortex“

CR

„Cruciate retaining“

HKB

Hinteres Kreuzband

PE

Polyethylen

PS

„Posterior stabilized“

PTC

„Posterior tibial cortex“

TLA

„Tibial long axis“

VKB

Vorderes Kreuzband

Importance of the tibial slope in knee arthroplasty

Abstract

Notwithstanding the contributions of soft tissue restraints on postoperative kinematics and long-term survival after total knee arthroplasty (TKA), there is an emerging consensus that the underlying anatomy, especially the posterior inclination of the tibial plateau in the sagittal plane (tibial slope), might just have a comparable impact. However, this has not been fully elucidated as yet. Therefore, a thorough literature search, analysis and presentation of current scientific data was conducted. The tibial slope has been shown to relate linearly to the postoperative range of motion and function of the extensor mechanism. Furthermore, it impacts wear of the tibial insert and loosening, as well as instability of the TKA. As no consensus has been reached on the ideal tibial slope, recommendations range from 0° to 10°. Notably, more recent studies favor reconstructing the native, preoperative tibial slope, and the majority of authors advocate that knowledge of this is crucial for optimal TKA surgery.

Keywords

Range of motion Joint instability Prosthesis loosening Prosthesis survival Biomechanical phenomena 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

S. Wittenberg, U. Sentuerk, L. Renner, C. Weynandt, C.F. Perka und C. Gwinner geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Agneskirchner JD, Hurschler C, Stukenborg-Colsman C et al (2004) Effect of high tibial flexion osteotomy on cartilage pressure and joint kinematics: a biomechanical study in human cadaveric knees. Winner of the AGA-DonJoy Award 2004. Arch Orthop Trauma Surg 124:575–584PubMedGoogle Scholar
  2. 2.
    Ahmed AM, Burke DL (1983) In-vitro measurement of static pressure distribution in synovial joints—Part I: Tibial surface of the knee. J Biomech Eng 105:216–225PubMedGoogle Scholar
  3. 3.
    Bai B, Baez J, Testa N et al (2000) Effect of posterior cut angle on tibial component loading. J Arthroplasty 15:916–920PubMedGoogle Scholar
  4. 4.
    Banks S, Bellemans J, Nozaki H et al (2003) Knee motions during maximum flexion in fixed and mobile-bearing arthroplasties. Clin Orthop Relat Res: 410:131–138.  https://doi.org/10.1097/01.blo.0000063121.39522.19 CrossRefGoogle Scholar
  5. 5.
    Banks SA, Harman MK, Hodge WA (2002) Mechanism of anterior impingement damage in total knee arthroplasty. J Bone Joint Surg Am 84-A(Suppl 2):37–42Google Scholar
  6. 6.
    Barrett WP, Mason JB, Moskal JT et al (2011) Comparison of radiographic alignment of imageless computer-assisted surgery vs conventional instrumentation in primary total knee arthroplasty. J Arthroplasty 26:1273–1284.e1PubMedGoogle Scholar
  7. 7.
    Bauer T, Biau D, Colmar M et al (2010) Influence of posterior condylar offset on knee flexion after cruciate-sacrificing mobile-bearing total knee replacement: a prospective analysis of 410 consecutive cases. Knee 17:375–380PubMedGoogle Scholar
  8. 8.
    Bellemans J, Robijns F, Duerinckx J et al (2005) The influence of tibial slope on maximal flexion after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 13:193–196PubMedGoogle Scholar
  9. 9.
    De Boer JJ, Blankevoort L, Kingma I et al (2009) In vitro study of inter-individual variation in posterior slope in the knee joint. Clin Biomech 24:488–492Google Scholar
  10. 10.
    Braun V, Biasca N, Romero J (2001) Factors influencing postoperative flexion after mobile bearing total knee arthroplasty. J Bone Joint Surg 83-B:133–134Google Scholar
  11. 11.
    Brazier J, Migaud H, Gougeon F et al (1996) Evaluation of methods for radiographic measurement of the tibial slope. A study of 83 healthy knees. Rev Chir Orthop Reparatrice Appar Mot 82:195–200PubMedGoogle Scholar
  12. 12.
    Brooks P (2009) Seven cuts to the perfect total knee. Orthopedics 32(9).  https://doi.org/10.3928/01477447-20090728-27 CrossRefPubMedGoogle Scholar
  13. 13.
    Browne C, Hermida JC, Bergula A et al (2005) Patellofemoral forces after total knee arthroplasty: effect of extensor moment arm. Knee 12:81–88PubMedGoogle Scholar
  14. 14.
    Bryan RS, Rand JA (1982) Revision total knee arthroplasty. Clin Orthop Relat Res 170:116–122Google Scholar
  15. 15.
    Catani F, Leardini A, Ensini A et al (2004) The stability of the cemented tibial component of total knee arthroplasty: posterior cruciate-retaining versus posterior-stabilized design. J Arthroplasty 19:775–782PubMedGoogle Scholar
  16. 16.
    Chakravarty R, Elmallah RD, Cherian JJ et al (2015) Polyethylene wear in knee arthroplasty. J Knee Surg 28:370–375PubMedGoogle Scholar
  17. 17.
    Chambers AW, Wood AR, Kosmopoulos V et al (2016) Effect of posterior tibial slope on flexion and anterior-posterior tibial translation in posterior cruciate-retaining total knee arthroplasty. J Arthroplasty 31:103–106PubMedGoogle Scholar
  18. 18.
    Dai Y, Cross MB, Angibaud LD et al (2018) Posterior tibial slope impacts intraoperatively measured mid-flexion anteroposterior kinematics during cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 26(11):3325–3332.  https://doi.org/10.1007/s00167-018-4877-7 CrossRefPubMedGoogle Scholar
  19. 19.
    Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br 76:745–749PubMedGoogle Scholar
  20. 20.
    Denis K, Van Ham G, Bellemans J et al (2002) How correctly does an intramedullary rod represent the longitudinal tibial axes? Clin Orthop Relat Res 397:424–433.  https://doi.org/10.1097/00003086-200204000-00050 CrossRefGoogle Scholar
  21. 21.
    Dorr LD, Boiardo RA (1986) Technical considerations in total knee arthroplasty. Clin Orthop Relat Res 205:5–11Google Scholar
  22. 22.
    Dorr LD, Ochsner JL, Gronley J, Perry J (1988) Functional comparison of posterior cruciate–retained versus cruciate-sacrificed total knee arthroplasty. Clin Orthop 236:36Google Scholar
  23. 23.
    Draganich LF, Andriacchi TP, Andersson GB (1987) Interaction between intrinsic knee mechanics and the knee extensor mechanism. J Orthop Res 5:539–547PubMedGoogle Scholar
  24. 24.
    Ewald FC, Jacobs MA, Miegel RE et al (1984) Kinematic total knee replacement. J Bone Joint Surg Am 66:1032–1040PubMedGoogle Scholar
  25. 25.
    Fantozzi S, Catani F, Ensini A et al (2006) Femoral rollback of cruciate-retaining and posterior-stabilized total knee replacements: in vivo fluoroscopic analysis during activities of daily living. J Orthop Res 24:2222–2229PubMedGoogle Scholar
  26. 26.
    Faschingbauer M, Sgroi M, Juchems M et al (2014) Can the tibial slope be measured on lateral knee radiographs? Knee Surg Sports Traumatol Arthrosc 22:3163–3167PubMedGoogle Scholar
  27. 27.
    Genin P, Weill G, Julliard R (1993) The tibial slope. Proposal for a measurement method. J Radiol 74:27–33PubMedGoogle Scholar
  28. 28.
    Giffin JR, Vogrin TM, Zantop T et al (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32:376–382PubMedGoogle Scholar
  29. 29.
    Giffin JR, Stabile KJ, Zantop T et al (2007) Importance of tibial slope for stability of the posterior cruciate ligament deficient knee. Am J Sports Med 35:1443–1449PubMedGoogle Scholar
  30. 30.
    Haddad B, Konan S, Mannan K et al (2012) Evaluation of the posterior tibial slope on MR images in different population groups using the tibial proximal anatomical axis. Acta Orthop Belg 78:757–763PubMedGoogle Scholar
  31. 31.
    Hamai S, Miura H, Matsuda S et al (2010) Contact stress at the anterior aspect of the tibial post in posterior-stabilized total knee replacement. J Bone Joint Surg Am 92:1765–1773PubMedGoogle Scholar
  32. 32.
    Han HS, Kang SB (2018) Interactive effect of femoral posterior condylar offset and tibial posterior slope on knee flexion in posterior cruciate ligament-substituting total knee arthroplasty. Knee 25:335–340PubMedGoogle Scholar
  33. 33.
    Hashemi J, Chandrashekar N, Gill B et al (2008) The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg Am 90:2724–2734PubMedPubMedCentralGoogle Scholar
  34. 34.
    Hofmann AA, Bachus KN, Wyatt RW (1991) Effect of the tibial cut on subsidence following total knee arthroplasty. Clin Orthop Relat Res 269:63–69Google Scholar
  35. 35.
    Hudek R, Schmutz S, Regenfelder F et al (2009) Novel measurement technique of the tibial slope on conventional MRI. Clin Orthop Relat Res 467:2066–2072PubMedPubMedCentralGoogle Scholar
  36. 36.
    Iwaki H, Pinskerova V, Freeman MA (2000) Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br 82:1189–1195PubMedGoogle Scholar
  37. 37.
    Jojima H, Whiteside LA, Ogata K (2004) Effect of tibial slope or posterior cruciate ligament release on knee kinematics. Clin Orthop Relat Res 426:194–198Google Scholar
  38. 38.
    Kang KT, Koh YG, Son J et al (2017) Biomechanical effects of posterior condylar offset and posterior tibial slope on quadriceps force and joint contact forces in posterior-stabilized total knee Arthroplasty. Biomed Res Int 2017:4908639PubMedPubMedCentralGoogle Scholar
  39. 39.
    Kang KT, Kwon SK, Son J et al (2018) The increase in posterior tibial slope provides a positive biomechanical effect in posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 26(10):3188–3195.  https://doi.org/10.1007/s00167-018-4925-3 CrossRefPubMedGoogle Scholar
  40. 40.
    Kansara D, Markel DC (2006) The effect of posterior tibial slope on range of motion after total knee arthroplasty. J Arthroplasty 21:809–813PubMedGoogle Scholar
  41. 41.
    Kim KH, Bin SI, Kim JM (2012) The correlation between posterior tibial slope and maximal angle of flexion after total knee arthroplasty. Knee Surg Relat Res 24:158–163PubMedPubMedCentralGoogle Scholar
  42. 42.
    Lombardi AV Jr., Berend KR, Aziz-Jacobo J et al (2008) Balancing the flexion gap: relationship between tibial slope and posterior cruciate ligament release and correlation with range of motion. J Bone Joint Surg Am 90(Suppl 4):121–132PubMedGoogle Scholar
  43. 43.
    Mahoney OM, Noble PC, Rhoads DD et al (1994) Posterior cruciate function following total knee arthroplasty. A biomechanical study. J Arthroplast 9:569–578Google Scholar
  44. 44.
    Malviya A, Lingard EA, Weir DJ et al (2009) Predicting range of movement after knee replacement: the importance of posterior condylar offset and tibial slope. Knee Surg Sports Traumatol Arthrosc 17:491–498PubMedGoogle Scholar
  45. 45.
    Marra MA, Strzelczak M, Heesterbeek PJC et al (2018) Anterior referencing of tibial slope in total knee arthroplasty considerably influences knee kinematics: a musculoskeletal simulation study. Knee Surg Sports Traumatol Arthrosc 26:1540–1548PubMedGoogle Scholar
  46. 46.
    Massin P, Gournay A (2006) Optimization of the posterior condylar offset, tibial slope, and condylar roll-back in total knee arthroplasty. J Arthroplasty 21:889–896PubMedGoogle Scholar
  47. 47.
    Matsuda S, Miura H, Nagamine R et al (1999) Posterior tibial slope in the normal and varus knee. Am J Knee Surg 12:165–168PubMedGoogle Scholar
  48. 48.
    Matziolis G, Mehlhorn S, Schattat N et al (2012) How much of the PCL is really preserved during the tibial cut? Knee Surg Sports Traumatol Arthrosc 20:1083–1086PubMedGoogle Scholar
  49. 49.
    Miner AL, Lingard EA, Wright EA et al (2003) Knee range of motion after total knee arthroplasty: how important is this as an outcome measure? J Arthroplast 18:286–294Google Scholar
  50. 50.
    Nunley RM, Nam D, Johnson SR et al (2014) Extreme variability in posterior slope of the proximal tibia: measurements on 2395 CT scans of patients undergoing UKA? J Arthroplasty 29:1677–1680PubMedPubMedCentralGoogle Scholar
  51. 51.
    Okamoto S, Mizu-Uchi H, Okazaki K et al (2015) Effect of tibial posterior slope on knee kinematics, quadriceps force, and patellofemoral contact force after posterior-stabilized total knee arthroplasty. J Arthroplasty 30:1439–1443PubMedGoogle Scholar
  52. 52.
    Ostermeier S, Hurschler C, Windhagen H et al (2006) In vitro investigation of the influence of tibial slope on quadriceps extension force after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 14:934–939PubMedGoogle Scholar
  53. 53.
    Oswald MH, Jakob RP, Schneider E et al (1993) Radiological analysis of normal axial alignment of femur and tibia in view of total knee arthroplasty. J Arthroplasty 8:419–426PubMedGoogle Scholar
  54. 54.
    Pinskerova V, Johal P, Nakagawa S et al (2004) Does the femur roll-back with flexion? J Bone Joint Surg Br 86:925–931PubMedGoogle Scholar
  55. 55.
    Ritter MA, Harty LD, Davis KE et al (2003) Predicting range of motion after total knee arthroplasty. Clustering, log-linear regression, and regression tree analysis. J Bone Joint Surg Am 85-A:1278–1285Google Scholar
  56. 56.
    Schatka I, Weiler A, Jung TM et al (2018) High tibial slope correlates with increased posterior tibial translation in healthy knees. Knee Surg Sports Traumatol Arthrosc 26:2697–2703PubMedGoogle Scholar
  57. 57.
    Shi X, Shen B, Kang P et al (2013) The effect of posterior tibial slope on knee flexion in posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 21:2696–2703PubMedGoogle Scholar
  58. 58.
    Singerman R, Dean JC, Pagan HD et al (1996) Decreased posterior tibial slope increases strain in the posterior cruciate ligament following total knee arthroplasty. J Arthroplasty 11:99–103PubMedGoogle Scholar
  59. 59.
    Singh G, Tan JH, Sng BY et al (2013) Restoring the anatomical tibial slope and limb axis may maximise post-operative flexion in posterior-stabilised total knee replacements. Bone Joint J 95-B:1354–1358PubMedGoogle Scholar
  60. 60.
    Takatsu T, Itokazu M, Shimizu K et al (1998) The function of posterior tilt of the tibial component following posterior cruciate ligament-retaining total knee arthroplasty. Bull Hosp Jt Dis 57:195–201PubMedGoogle Scholar
  61. 61.
    Tew M, Forster IW, Wallace WA (1989) Effect of total knee arthroplasty on maximal flexion. Clin Orthop Relat Res 247:168–174Google Scholar
  62. 62.
    Utzschneider S, Goettinger M, Weber P et al (2011) Development and validation of a new method for the radiologic measurement of the tibial slope. Knee Surg Sports Traumatol Arthrosc 19:1643–1648PubMedGoogle Scholar
  63. 63.
    Walker PS, Garg A (1991) Range of motion in total knee arthroplasty. A computer analysis. Clin Orthop Relat Res 262:227–235Google Scholar
  64. 64.
    Walker PS, Hajek JV (1972) The load-bearing area in the knee joint. J Biomech 5:581–589PubMedGoogle Scholar
  65. 65.
    Wasielewski RC, Galante JO, Leighty RM et al (1994) Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clin Orthop Relat Res 299:31–43Google Scholar
  66. 66.
    Whiteside LA, Amador DD (1988) The effect of posterior tibial slope on knee stability after Ortholoc total knee arthroplasty. J Arthroplasty 3(Suppl):S51–S57PubMedGoogle Scholar
  67. 67.
    Yoo JH, Chang CB, Shin KS et al (2008) Anatomical references to assess the posterior tibial slope in total knee arthroplasty: a comparison of 5 anatomical axes. J Arthroplasty 23:586–592PubMedGoogle Scholar
  68. 68.
    Zelle J, Heesterbeek PJ, De Waal Malefijt M et al (2010) Numerical analysis of variations in posterior cruciate ligament properties and balancing techniques on total knee arthroplasty loading. Med Eng Phys 32:700–707PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Silvan Wittenberg
    • 1
    Email author
  • Ufuk Sentuerk
    • 1
  • Lisa Renner
    • 1
  • Claude Weynandt
    • 1
  • Carsten F. Perka
    • 1
  • Clemens Gwinner
    • 1
  1. 1.Centrum für Muskuloskeletale ChirurgieCharité – Universitätsmedizin BerlinBerlinDeutschland

Personalised recommendations