Advertisement

Hüftendoprothetik beim jungen Patienten

Gleitpaarungen und Individualendoprothesen
  • C. Benignus
  • M. Morlock
  • J. BeckmannEmail author
Leitthema

Zusammenfassung

Hintergrund

Grundvoraussetzung für die Lebensdauer einer Hüftendoprothese bleibt vor allem anderen eine sorgfältige und korrekte Implantation der Komponenten. Ob ein erhöhtes Aktivitätslevel ein früheres Versagen des endoprothetischen Ersatzes beim jungen Patienten beeinflusst, wird derzeit noch kontrovers diskutiert. Die richtige Wahl der Gleitpaarung spielt weiterhin eine wichtige Rolle.

Gleitpaarungen

Sowohl Keramik-Keramik- als auch PE-Keramik-Gleitpaarungen können mit ähnlich guten Ergebnissen eingesetzt werden, wobei Keramik-Keramik-Paarungen für Patienten mit sehr hohen Anforderungen an den Bewegungsumfang eher vermieden werden sollten. PE-Metall-Gleitpaarungen zeigen ebenfalls gute klinische Ergebnisse, sofern keine Korrosion zwischen Kopf und Schaft auftritt. Metall-Metall-Gleitpaarungen sollten wegen der systemischen Auswirkungen von Metallverschleiß nur in gut begründeten Einzelfällen, z. B. in Form des Oberflächenersatzes, gewählt werden. Alternative Gleitpaarungen müssen erst noch unter Beweis stellen, welches klinische Problem sie lösen. Die Individualendoprothetik stellt eine Möglichkeit bei der Versorgung junger Patienten mit besonderen anatomischen Verhältnissen dar. Die Planung dieser Prothesen sowie die Studienergebnisse werden in diesem Artikel näher beleuchtet.

Schlüsselwörter

Hüft-TEP Abrieb Korrosion Tribologie 

Abkürzungen

CAD

Computerassistiertes Design

CCD

Centrum-Collum-Diaphysenwinkel

Co

Kobalt

CPE

„Conventional polyethylene“

Cr

Chrom

CT

Computertomographie

DLC

„Diamond-like carbon“

Mo

Molybdän

MOM

„Metal on metal“

PE

Polyethylen

TiN

Titan-Nitrid

XLPE

„Cross-linked polyethylene“

Total hip arthroplasty in young patients

Bearings and custom-made prostheses

Abstract

Background

Carefully and correctly implanted components are the prerequisite for the lifespan of a prosthesis. Whether higher levels of activity lead to prior failure of total hip arthroplasty in young patients is controversially discussed. The right choice of bearings is still of great relevance.

Bearings

Ceramic-on-ceramic as well as polyethylene-on-ceramic bearings achieve comparable results, although ceramic-on-ceramic bearings should be avoided in patients with high demands on their range of motion. Polyethylene-on-metal bearings also show good clinical results, if corrosion between head and stem is absent. Metal-on-metal bearings lead to adverse systemic effects due to metal wear and should be implanted in individual cases only, e. g. as hip resurfacing. Alternative bearings have to give proof of effectivity first. Custom-made prostheses constitute an option for young patients with special conditions of hip anatomy. Planning and study results of these prostheses are elucidated in this review article.

Keywords

THA Wear Corrosion Tribology 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. Benignus, M. Morlock und J. Beckmann geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Ast MP, John TK, Labbisiere A et al (2014) Fractures of a single design of highly cross-linked polyethylene acetabular liners: An analysis of voluntary reports to the United States Food and Drug Administration. J Arthroplasty 29:1231–1235Google Scholar
  2. 2.
    Bernstein M, Desy NM, Petit A et al (2012) Long-term follow-up and metal ion trend of patients with metal-on-metal total hip arthroplasty. Int Orthop 36:1807–1812Google Scholar
  3. 3.
    Bongaerts G, Jensen KU, Denda A, Schneider S (2009) Reduzierter Metallionenanstieg bei Patienten mit keramikbeschichteter Oberflächenersatzendoprothese? Unfallchirurg 112:13Google Scholar
  4. 4.
    Bosker BH, Ettema HB, Boomsma MF et al (2012) High incidence of pseudotumour formation after large-diameter metal-on-metal total hip replacement: A prospective cohort study. J Bone Joint Surg Br 94:755–761Google Scholar
  5. 5.
    Bracco P, Bellare A, Bistolfi A et al (2017) Ultra-high molecular weight polyethylene: Influence of the chemical, physical and mechanical properties on the wear behavior. A review. Materials (Basel) 10(7):791.  https://doi.org/10.3390/ma10070791 Google Scholar
  6. 6.
    Clarke IC, Good V, Williams P et al (2000) Ultra-low wear rates for rigid-on-rigid bearings in total hip replacements. Proc Inst Mech Eng H J Eng Med 214:331–347Google Scholar
  7. 7.
    Dahl J, Söderlund P, Nivbrant B et al (2012) Less wear with aluminium-oxide heads than cobalt-chrome heads with ultra high molecular weight cemented polyethylene cups: A ten-year follow-up with radiostereometry. Int Orthop 36:485–490Google Scholar
  8. 8.
    Delay C, Putman S, Dereudre G et al (2016) Is there any range-of-motion advantage to using bearings larger than 36 mm in primary hip arthroplasty: A case-control study comparing 36-mm and large-diameter heads. Orthop Traumatol Surg Res 102:735–740Google Scholar
  9. 9.
    Faur C, Crainic N, Sticlaru C et al (2013) Rapid prototyping technique in the preoperative planning for total hip arthroplasty with custom femoral components. Wien Klin Wochenschr 125:144–149Google Scholar
  10. 10.
    Flecher X, Ollivier M, Maman P et al (2018) Long-term results of custom cementless-stem total hip arthroplasty performed in hip fusion. Int Orthop 42(6):1259–1264Google Scholar
  11. 11.
    Flecher X, Parratte S, Aubaniac J‑M et al (2016) Computer-assisted designed hip arthroplasty. In: Poitout DG (Hrsg) Biomechanics and biomaterials in orthopedics. Springer, London, S 319–329Google Scholar
  12. 12.
    Flecher X, Pearce O, Parratte S et al (2010) Custom cementless stem improves hip function in young patients at 15-year followup. Clin Orthop Relat Res 468:747–755Google Scholar
  13. 13.
    Galvin AL, Jennings LM, Tipper JL et al (2010) Wear and creep of highly crosslinked polyethylene against cobalt chrome and ceramic femoral heads. Proc Inst Mech Eng H J Eng Med 224:1175–1183Google Scholar
  14. 14.
    Gaudiani MA, White PB, Ghazi N et al (2018) Wear rates with large metal and ceramic heads on a second generation highly cross-linked polyethylene at mean 6‑year follow-up. J Arthroplasty 33:590–594Google Scholar
  15. 15.
    Giardina F, Castagnini F, Stea S et al (2018) Short stems versus conventional stems in cementless total hip arthroplasty: A long-term registry study. J Arthroplasty 33(6):1794–1799Google Scholar
  16. 16.
    Girard J (2017) Hip resurfacing: International perspectives. HSS J 13:7–11.  https://doi.org/10.1007/s11420-016-9511-y Google Scholar
  17. 17.
    Graves S, de Steiger R, Lewis P, Harris I (2017) Australian Orthopaedic Association National Joint Replacement Registry: Hip, knee and shoulder arthroplasty. Annual report 2017Google Scholar
  18. 18.
    Han SB, Oh JK, Jang WY et al (2018) Increased serum Ion levels after ceramic-on-metal bearing total hip arthroplasty: Influence of an Asian lifestyle. J Arthroplasty 33:887–892Google Scholar
  19. 19.
    Harman MK, Banks SA, Hodge WA (1997) Wear analysis of a retrieved hip implant with titanium nitride coating. J Arthroplasty 12:938–945Google Scholar
  20. 20.
    Hauert R, Falub CV, Thorwarth G et al (2012) Retrospective lifetime estimation of failed and explanted diamond-like carbon coated hip joint balls. Acta Biomater 8:3170–3176Google Scholar
  21. 21.
    Hernigou P, Roubineau F, Bouthors C et al (2016) What every surgeon should know about ceramic-on-ceramic bearings in young patients. EFORT Open Rev 1:107–111Google Scholar
  22. 22.
    Hernigou P, Zilber S, Filippini P et al (2009) Ceramic-ceramic bearing decreases osteolysis: A 20-year study versus ceramic-polyethylene on the contralateral hip. Clin Orthop Relat Res 467:2274–2280Google Scholar
  23. 23.
    Hitz OF, Flecher X, Parratte S et al (2018) Minimum 10-year outcome of one-stage total hip arthroplasty without subtrochanteric osteotomy using a cementless custom stem for Crowe III and IV hip dislocation. J Arthroplasty 33(7):2197–2202Google Scholar
  24. 24.
    Hopper RH Jr., Ho H, Sritulanondha S et al (2018) Otto Aufranc Award: Crosslinking reduces THA wear, osteolysis, and revision rates at 15-year followup compared with noncrosslinked polyethylene. Clin Orthop Relat Res 476:279–290Google Scholar
  25. 25.
    Howie DW, Holubowycz OT, Middleton R (2012) Large femoral heads decrease the incidence of dislocation after total hip arthroplasty: A randomized controlled trial. J Bone Joint Surg Am 94:1095–1102Google Scholar
  26. 26.
    Isaac GH, Brockett C, Breckon A et al (2009) Ceramic-on-metal bearings in total hip replacement: whole blood metal ion levels and analysis of retrieved components. J Bone Joint Surg Br 91:1134–1141Google Scholar
  27. 27.
    Jemmett P, Parfitt D, Rice R (2016) Early clinical failure of the ACCIS(R) metal on metal hip arthroplasty system—A metal on metal hip with a difference. Acta Orthop Belg 82:491–196Google Scholar
  28. 28.
    Kircher J, Bergschmidt P, Bader R et al (2007) Die Bedeutung der Gleitpaarung beim jüngeren Endoprothesenpatienten. Orthopäde 36:337–346Google Scholar
  29. 29.
    Kocagoz SB, Underwood RJ, Macdonald DW et al (2016) Ceramic heads decrease metal release caused by head-taper fretting and corrosion. Clin Orthop Relat Res 474:985–994Google Scholar
  30. 30.
    Kurtz SM, Gawel HA, Patel JD (2011) History and systematic review of wear and osteolysis outcomes for first-generation highly crosslinked polyethylene. Clin Orthop Relat Res 469:2262–2277Google Scholar
  31. 31.
    Langton DJ, Jameson SS, Joyce TJ et al (2010) Early failure of metal-on-metal bearings in hip resurfacing and large-diameter total hip replacement: A consequence of excess wear. J Bone Joint Surg Br 92:38–46Google Scholar
  32. 32.
    Lappalainen R, Selenius M, Anttila A et al (2003) Reduction of wear in total hip replacement prostheses by amorphous diamond coatings. J Biomed Mater Res Part B Appl Biomater 66:410–413Google Scholar
  33. 33.
    Lavigne M, Belzile EL, Roy A et al (2011) Comparison of whole-blood metal ion levels in four types of metal-on-metal large-diameter femoral head total hip arthroplasty: The potential influence of the adapter sleeve. J Bone Joint Surg Am 93(2):128–136Google Scholar
  34. 34.
    Levy YD, Munir S, Donohoo S et al (2015) Review on squeaking hips. World J Orthop 6:812–820Google Scholar
  35. 35.
    Matthies AK, Skinner JA, Osmani H et al (2012) Pseudotumors are common in well-positioned low-wearing metal-on-metal hips. Clin Orthop Relat Res 470:1895–1906Google Scholar
  36. 36.
    Maus U, Roth A, Tingart M et al (2015) S3 guideline. Part 3: Non-traumatic avascular necrosis in adults—Surgical treatment of Atraumatic avascular femoral head necrosis in adults. Z Orthop Unfall 153:498–507Google Scholar
  37. 37.
    Meira EP, Zeni J Jr. (2014) Sports participation following total hip arthroplasty. Int J Sports Phys Ther 9:839–850Google Scholar
  38. 38.
    Mont MA, Seyler TM, Marker DR et al (2006) Use of metal-on-metal total hip resurfacing for the treatment of osteonecrosis of the femoral head. J Bone Joint Surg Am 88(3):90–97Google Scholar
  39. 39.
    Morlock M, Bunte D, Guhrs J et al (2017) Corrosion of the head-stem taper junction-are we on the verge of an epidemic? HSS J 13:42–49Google Scholar
  40. 40.
    Morlock MM, Jäger M (2017) Endoprothetik des älteren Menschen. Orthopäde 46:4–17Google Scholar
  41. 41.
    Muirhead-Allwood SK, Sandiford N, Skinner JA et al (2010) Uncemented custom computer-assisted design and manufacture of hydroxyapatite-coated femoral components: Survival at 10 to 17 years. J Bone Joint Surg Br 92:1079–1084Google Scholar
  42. 42.
    Nebergall AK, Greene ME, Laursen MB et al (2017) Vitamin E diffused highly cross-linked polyethylene in total hip arthroplasty at five years: A randomised controlled trial using radiostereometric analysis. Bone Joint J 99-B:577–584Google Scholar
  43. 43.
    Ollivier M, Frey S, Parratte S et al (2012) Does impact sport activity influence total hip arthroplasty durability? Clin Orthop Relat Res 470:3060–3066Google Scholar
  44. 44.
    Oral E, Ghali BW, Muratoglu OK (2011) The elimination of free radicals in irradiated UHMWPEs with and without vitamin E stabilization by annealing under pressure. J Biomed Mater Res Part B Appl Biomater 97:167–174Google Scholar
  45. 45.
    Osagie L, Figgie M, Bostrom M (2012) Custom total hip arthroplasty in skeletal dysplasia. Int Orthop 36:527–531Google Scholar
  46. 46.
    Prieto HA, Kamath AF, Lewallen DG (2017) Total hip replacement in the young patient. In: McCarthy JC, Noble PC, Villar RN (Hrsg) Hip joint restoration: Worldwide advances in arthroscopy, arthroplasty, osteotomy and joint preservation surgery. Springer, New York, S 777–785Google Scholar
  47. 47.
    Purdue PE, Koulouvaris P, Nestor BJ et al (2006) The central role of wear debris in periprosthetic osteolysis. HSS J 2:102–113Google Scholar
  48. 48.
    Raimondi MT, Pietrabissa R (2000) The in-vivo wear performance of prosthetic femoral heads with titanium nitride coating. Biomaterials 21:907–913Google Scholar
  49. 49.
    Schlegel UJ, Bishop N, Sobottke R et al (2011) Quietschen als Revisionsursache einer Kompositkeramikpfanne. Orthopäde 40:812Google Scholar
  50. 50.
    Schouten R, Malone AA, Tiffen C et al (2012) A prospective, randomised controlled trial comparing ceramic-on-metal and metal-on-metal bearing surfaces in total hip replacement. J Bone Joint Surg Br 94:1462–1467Google Scholar
  51. 51.
    Sewell MD, Hanna SA, Muirhead-Allwood SK et al (2011) Custom cementless THA in patients with skeletal dysplasia results in lower apparent revision rates than other types of femoral fixation. Clin Orthop Relat Res 469:1406–1412Google Scholar
  52. 52.
    Sexton SA, Yeung E, Jackson MP et al (2011) The role of patient factors and implant position in squeaking of ceramic-on-ceramic total hip replacements. J Bone Joint Surg Br 93:439–442Google Scholar
  53. 53.
    Smith AJ, Dieppe P, Howard PW et al (2012) Failure rates of metal-on-metal hip resurfacings: Analysis of data from the National Joint Registry for England and Wales. Lancet 380:1759–1766Google Scholar
  54. 54.
    Sonntag R, Reinders J, Müller U et al (2015) Wahl der richtigen Gleitpaarung in der Hüftendoprothetik. Z Orthop Unfall 153:587–596Google Scholar
  55. 55.
    Streicher RM, Thomsen M (2003) Polyethylen als Implantatwerkstoff. Orthopäde 32:23–31Google Scholar
  56. 56.
    Thomas V, Halloran BA, Ambalavanan N et al (2012) In vitro studies on the effect of particle size on macrophage responses to nanodiamond wear debris. Acta Biomater 8:1939–1947Google Scholar
  57. 57.
    Walter WL, Kurtz SM, Esposito C et al (2011) Retrieval analysis of squeaking alumina ceramic-on-ceramic bearings. J Bone Joint Surg Br 93:1597–1601Google Scholar
  58. 58.
    Williams S, Al-Hajjar M, Isaac GH et al (2013) Comparison of ceramic-on-metal and metal-on-metal hip prostheses under adverse conditions. J Biomed Mater Res Part B Appl Biomater 101:770–775Google Scholar
  59. 59.
    Yee MA, O’keefe TJ, Winter S (2016) Incarcerated fracture fragments of longevity polyethylene liners after total hip arthroplasty. Arthroplast Today 2:6–10Google Scholar
  60. 60.
    Zywiel MG, Brandt JM, Overgaard CB et al (2013) Fatal cardiomyopathy after revision total hip replacement for fracture of a ceramic liner. Bone Joint J 95-B:31–37Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Sportklinik Stuttgart GmbHStuttgartDeutschland
  2. 2.Institut für BiomechanikTUHH Technische Universität HamburgHamburgDeutschland

Personalised recommendations