Advertisement

Der Orthopäde

, Volume 48, Issue 1, pp 105–116 | Cite as

Klinische Anwendung von Platelet-rich plasma und Wachstumsfaktoren am Bewegungsapparat

  • L. Leitner
  • G. Gruber
  • B. Lohberger
  • H. Kaltenegger
  • A. Leithner
  • P. SadoghiEmail author
CME

Zusammenfassung

Platelet-rich plasma (PRP; englisch für thrombozytenangereichertes Plasma) und Wachstumsfaktoren erfahren eine zunehmende Popularität in der orthopädischen Behandlung degenerativer und traumatischer Erkrankungen. Das Behandlungskonzept beruht auf der Substitution von wachstumsfördernden Substanzen in Geweben mit geringer und fehlender Regenerationskapazität (Knorpel, Sehnen). Dieses Konzept kann auch zur weiteren Beschleunigung oder Induktion von Wachstum (Knochen, Muskel) angewendet werden. In der vorliegenden Übersichtsarbeit werden Anwendungsmöglichkeiten und eine Zusammenfassung der aktuellen Studienlage dargestellt.

Schlüsselwörter

„Bone morphogenetic proteins“ „Fibroblast growth factor“ „Vascular endothelial growth factor“ Tissueengineering Frakturen 

Clinical administration of platelet-rich plasma and growth factors to the musculoskeletal system

Abstract

Platelet-rich plasma (PRP) and growth factors have been increasing in popularity for the orthopedic treatment of degenerative and traumatic diseases. The treatment concept is based on the substitution of growth-inducing substances in tissues with low or absent regeneration capacity (cartilage, tendons) as well as for the induction or further acceleration of growth and regeneration (bone, muscle). This review article provides an overview on the clinical feasibility of usage and a summary of the current study situation.

Keywords

Bone morphogenetic proteins Fibroblast growth factor Vascular endothelial growth factor Tissue Engineering Fractures 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

L. Leitner, G. Gruber, B. Lohberger, H. Kaltenegger, A. Leithner und P. Sadoghi geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Dhillon RS, Schwarz EM, Maloney MD (2012) Platelet-rich plasma therapy—future or trend? Arthritis Res Ther 14(4):219.  https://doi.org/10.1186/ar3914 Google Scholar
  2. 2.
    Marx RE (2001) Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent 10(4):225–228Google Scholar
  3. 3.
    Dhillon MS, Behera P, Patel S, Shetty V (2014) Orthobiologics and platelet rich plasma. Indian J Orthop 48(1):1–9.  https://doi.org/10.4103/0019-5413.125477 Google Scholar
  4. 4.
    Jo CH, Kim JE, Yoon KS, Shin S (2012) Platelet-rich plasma stimulates cell proliferation and enhances matrix gene expression and synthesis in tenocytes from human rotator cuff tendons with degenerative tears. Am J Sports Med 40(5):1035–1045.  https://doi.org/10.1177/0363546512437525 Google Scholar
  5. 5.
    Wasterlain AS, Braun HJ, Harris AH, Kim HJ, Dragoo JL (2013) The systemic effects of platelet-rich plasma injection. Am J Sports Med 41(1):186–193.  https://doi.org/10.1177/0363546512466383 Google Scholar
  6. 6.
    Peerbooms JC, Sluimer J, Bruijn DJ, Gosens T (2010) Positive effect of an autologous platelet concentrate in lateral epicondylitis in a double-blind randomized controlled trial: platelet-rich plasma versus corticosteroid injection with a 1-year follow-up. Am J Sports Med 38(2):255–262.  https://doi.org/10.1177/0363546509355445 Google Scholar
  7. 7.
    Senzel L, Gnatenko DV, Bahou WF (2009) The platelet proteome. Curr Opin Hematol 16(5):329–333.  https://doi.org/10.1097/MOH.0b013e32832e9dc6 Google Scholar
  8. 8.
    Schulte WV (1960) Die Eigenblutfüllung: eine neue Methode zur Versorgung größerer Knochendefkte nach intraoralen Eingriffen. Dtsch Zahnärztl Z 12:910–914Google Scholar
  9. 9.
    Edwards SG, Calandruccio JH (2003) Autologous blood injections for refractory lateral epicondylitis. J Hand Surg Am 28(2):272–278Google Scholar
  10. 10.
    Dohan Ehrenfest DM, Rasmusson L, Albrektsson T (2009) Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol 27(3):158–167.  https://doi.org/10.1016/j.tibtech.2008.11.009 Google Scholar
  11. 11.
    Sadoghi P, Lohberger B, Aigner B, Kaltenegger H, Friesenbichler J, Wolf M, Sununu T, Leithner A, Vavken P (2013) Effect of platelet-rich plasma on the biologic activity of the human rotator-cuff fibroblasts: a controlled in vitro study. J Orthop Res 31(8):1249–1253.  https://doi.org/10.1002/jor.22360 Google Scholar
  12. 12.
    Hoppe S, Alini M, Benneker LM, Milz S, Boileau P, Zumstein MA (2013) Tenocytes of chronic rotator cuff tendon tears can be stimulated by platelet-released growth factors. J Shoulder Elbow Surg 22(3):340–349.  https://doi.org/10.1016/j.jse.2012.01.016 Google Scholar
  13. 13.
    Sundman EA, Cole BJ, Fortier LA (2011) Growth factor and catabolic cytokine concentrations are influenced by the cellular composition of platelet-rich plasma. Am J Sports Med 39(10):2135–2140.  https://doi.org/10.1177/0363546511417792 Google Scholar
  14. 14.
    Mazzocca AD, McCarthy MB, Chowaniec DM, Cote MP, Romeo AA, Bradley JP, Arciero RA, Beitzel K (2012) Platelet-rich plasma differs according to preparation method and human variability. J Bone Joint Surg Am 94(4):308–316.  https://doi.org/10.2106/JBJS.K.00430 Google Scholar
  15. 15.
    Leitner L, Hirzberger D, Vavken P, Amerstorfer F, Bernhardt G, Vielgut I, Leithner A, Sadoghi P (2015) Platelet-rich plasma: mode of action and treatment of musculoskeletal diseases. Sports Orthop Traumatol 31(4):272–277Google Scholar
  16. 16.
    Yoshikawa Y, Abrahamsson SO (2001) Dose-related cellular effects of platelet-derived growth factor-BB differ in various types of rabbit tendons in vitro. Acta Orthop Scand 72(3):287–292.  https://doi.org/10.1080/00016470152846646 Google Scholar
  17. 17.
    Hee CK, Dines JS, Dines DM, Roden CM, Wisner-Lynch LA, Turner AS, McGilvray KC, Lyons AS, Puttlitz CM, Santoni BG (2011) Augmentation of a rotator cuff suture repair using rhPDGF-BB and a type I bovine collagen matrix in an ovine model. Am J Sports Med 39(8):1630–1639.  https://doi.org/10.1177/0363546511404942 Google Scholar
  18. 18.
    Hu K, Olsen BR (2016) The roles of vascular endothelial growth factor in bone repair and regeneration. Bone 91:30–38.  https://doi.org/10.1016/j.bone.2016.06.013 Google Scholar
  19. 19.
    Petersen W, Pufe T, Zantop T, Tillmann B, Tsokos M, Mentlein R (2004) Expression of VEGFR-1 and VEGFR-2 in degenerative Achilles tendons. Clin Orthop Relat Res 2004(420):286–291Google Scholar
  20. 20.
    Janning M, Loges S (2018) Anti-angiogenics: their value in lung cancer therapy. Oncol Res Treat 41(4):172–180.  https://doi.org/10.1159/000488119 Google Scholar
  21. 21.
    Creaney L, Hamilton B (2008) Growth factor delivery methods in the management of sports injuries: the state of play. Br J Sports Med 42(5):314–320Google Scholar
  22. 22.
    Busilacchi A, Gigante A, Mattioli-Belmonte M, Manzotti S, Muzzarelli RA (2013) Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration. Carbohydr Polym 98(1):665–676.  https://doi.org/10.1016/j.carbpol.2013.06.044 Google Scholar
  23. 23.
    Qian Y, Han Q, Chen W, Song J, Zhao X, Ouyang Y, Yuan W, Fan C (2017) Platelet-rich plasma derived growth factors contribute to stem cell differentiation in musculoskeletal regeneration. Front Chem 5:89.  https://doi.org/10.3389/fchem.2017.00089 Google Scholar
  24. 24.
    Shehata M, Schwarzmeier JD, Hilgarth M, Hubmann R, Duechler M, Gisslinger H (2004) TGF-beta1 induces bone marrow reticulin fibrosis in hairy cell leukemia. J Clin Invest 113(5):676–685Google Scholar
  25. 25.
    Cheng MT, Liu CL, Chen TH, Lee OK (2014) Optimization of culture conditions for stem cells derived from human anterior cruciate ligament and bone marrow. Cell Transplant 23(7):791–803.  https://doi.org/10.3727/096368912X666430 Google Scholar
  26. 26.
    Granchi D, Devescovi V, Pratelli L, Verri E, Magnani M, Donzelli O, Baldini N (2013) Serum levels of fibroblast growth factor 2 in children with orthopedic diseases: potential role in predicting bone healing. J Orthop Res 31(2):249–256.  https://doi.org/10.1002/jor.22219 Google Scholar
  27. 27.
    Clendenen TV, Arslan AA, Lokshin AE, Idahl A, Hallmans G, Koenig KL, Marrangoni AM, Nolen BM, Ohlson N, Zeleniuch-Jacquotte A, Lundin E (2010) Temporal reliability of cytokines and growth factors in EDTA plasma. BMC Res Notes 3:302.  https://doi.org/10.1186/1756-0500-3-302 Google Scholar
  28. 28.
    Gaissmaier C, Koh JL, Weise K (2008) Growth and differentiation factors for cartilage healing and repair. Injury 39(Suppl 1):S88–S96.  https://doi.org/10.1016/j.injury.2008.01.035 Google Scholar
  29. 29.
    Re’em T, Kaminer-Israeli Y, Ruvinov E, Cohen S (2012) Chondrogenesis of hMSC in affinity-bound TGF-beta scaffolds. Biomaterials 33(3):751–761.  https://doi.org/10.1016/j.biomaterials.2011.10.007 Google Scholar
  30. 30.
    Hussain N, Johal H, Bhandari M (2017) An evidence-based evaluation on the use of platelet rich plasma in orthopedics—a review of the literature. SICOT J 3:57.  https://doi.org/10.1051/sicotj/2017036 Google Scholar
  31. 31.
    Demange MK, Sisto M, Rodeo S (2014) Future trends for unicompartmental arthritis of the knee. Injectables & stem cells. Clin Sports Med 33(1):161–174.  https://doi.org/10.1016/j.csm.2013.06.006 Google Scholar
  32. 32.
    Dai WL, Zhou AG, Zhang H, Zhang J (2017) Efficacy of platelet-rich plasma in the treatment of knee osteoarthritis: a meta-analysis of randomized controlled trials. Arthroscopy 33(3):659–670.e1.  https://doi.org/10.1016/j.arthro.2016.09.024 Google Scholar
  33. 33.
    Shen L, Yuan T, Chen S, Xie X, Zhang C (2017) The temporal effect of platelet-rich plasma on pain and physical function in the treatment of knee osteoarthritis: systematic review and meta-analysis of randomized controlled trials. J Orthop Surg Res 12(1):16.  https://doi.org/10.1186/s13018-017-0521-3 Google Scholar
  34. 34.
  35. 35.
    Prodromos C, Joyce B, Shi K (2007) A meta-analysis of stability of autografts compared to allografts after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 15(7):851–856Google Scholar
  36. 36.
    Andriolo L, Di Matteo B, Kon E, Filardo G, Venieri G, Marcacci M (2015) PRP augmentation for ACL reconstruction. Biomed Res Int 2015:371746.  https://doi.org/10.1155/2015/371746 Google Scholar
  37. 37.
    Figueroa D, Figueroa F, Calvo R, Vaisman A, Ahumada X, Arellano S (2015) Platelet-rich plasma use in anterior cruciate ligament surgery: systematic review of the literature. Arthroscopy 31(5):981–988.  https://doi.org/10.1016/j.arthro.2014.11.022 Google Scholar
  38. 38.
    Shiri R, Viikari-Juntura E, Varonen H, Heliövaara M (2006) Prevalence and determinants of lateral and medial epicondylitis: a population study. Am J Epidemiol 164(11):1065–1074Google Scholar
  39. 39.
    Johnson GW, Cadwallader K, Scheffel SB, Epperly TD (2007) Treatment of lateral epicondylitis. Am Fam Physician 76(6):843–848Google Scholar
  40. 40.
    Ahmad Z, Brooks R, Kang SN, Weaver H, Nunney I, Tytherleigh-Strong G, Rushton N (2013) The effect of platelet-rich plasma on clinical outcomes in lateral epicondylitis. Arthroscopy 29(11):1851–1862.  https://doi.org/10.1016/j.arthro.2013.07.272 Google Scholar
  41. 41.
    Arirachakaran A, Sukthuayat A, Sisayanarane T, Laoratanavoraphong S, Kanchanatawan W, Kongtharvonskul J (2016) Platelet-rich plasma versus autologous blood versus steroid injection in lateral epicondylitis: systematic review and network meta-analysis. J Orthop Traumatol 17(2):101–112.  https://doi.org/10.1007/s10195-015-0376-5 Google Scholar
  42. 42.
    Oliva F, Osti L, Padulo J, Maffulli N (2014) Epidemiology of the rotator cuff tears: a new incidence related to thyroid disease. Muscles Ligaments Tendons J 4(3):309–314Google Scholar
  43. 43.
    Moraes VY, Lenza M, Tamaoki MJ, Faloppa F, Belloti JC (2014) Platelet-rich therapies for musculoskeletal soft tissue injuries. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD010071.pub3 Google Scholar
  44. 44.
    Vavken P, Sadoghi P, Palmer M, Rosso C, Mueller AM, Szoelloesy G, Valderrabano V (2015) Platelet-rich plasma reduces retear rates after arthroscopic repair of small- and medium-sized rotator cuff tears but is not cost-effective. Am J Sports Med 43(12):3071–3076.  https://doi.org/10.1177/0363546515572777 Google Scholar
  45. 45.
    Saltzman BM, Jain A, Campbell KA, Mascarenhas R, Romeo AA, Verma NN, Cole BJ (2016) Does the use of plateletrich plasma at the time of surgery improve clinical outcomes in arthroscopic rotator cuff repair when compared with control cohorts? A systematic review of meta-analyses. Arthroscopy 32(5):906–918.  https://doi.org/10.1016/j.arthro.2015.10.007 Google Scholar
  46. 46.
    Lian OB, Engebretsen L, Bahr R (2005) Prevalence of jumper’s knee among elite athletes from different sports: a cross-sectional study. Am J Sports Med 33(4):561–567Google Scholar
  47. 47.
    Kujala UM, Sarna S, Kaprio J (2005) Cumulative incidence of achilles tendon rupture and tendinopathy in male former elite athletes. Clin J Sport Med 15(3):133–135Google Scholar
  48. 48.
    Di Matteo B, Filardo G, Kon E, Marcacci M (2015) Platelet rich plasma: evidence for the treatment of patellar and Achilles tendinopathy—a systematic review. Musculoskelet Surg 99(1):1–9.  https://doi.org/10.1007/s12306-014-0340-1 Google Scholar
  49. 49.
    Liddle AD, Rodríguez-Merchán EC (2015) Platelet-rich plasma in the treatment of patellar tendinopathy: a systematic review. Am J Sports Med 43(10):2583–2590.  https://doi.org/10.1177/0363546514560726 Google Scholar
  50. 50.
    Harwood PJ, Ferguson DO (2015) (ii) An update on fracture healing and non-union. Orthop Trauma 29:228–242.  https://doi.org/10.1016/j.mporth.2015.07.004 Google Scholar
  51. 51.
    Fisher DM, Wong JM, Crowley C, Khan WS (2013) Preclinical and clinical studies on the use of growth factors for bone repair: a systematic review. Curr Stem Cell Res Ther 8(3):260–268Google Scholar
  52. 52.
    Einhorn TA, Gerstenfeld LC (2015) Fracture healing: mechanisms and interventions. Nat Rev Rheumatol 11(1):45–54.  https://doi.org/10.1038/nrrheum.2014.164 Google Scholar
  53. 53.
    Wang W, Yeung KWK (2017) Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater 2(4):224–247.  https://doi.org/10.1016/j.bioactmat.2017.05.007 Google Scholar
  54. 54.
    Courvoisier A, Sailhan F, Laffenêtre O, Obert L (2014) Bone morphogenetic protein and orthopaedic surgery: can we legitimate its off-label use? Int Orthop 38(12):2601–2605.  https://doi.org/10.1007/s00264-014-2534-4 Google Scholar
  55. 55.
    Boraiah S, Paul O, Hawkes D, Wickham M, Lorich DG (2009) Complications of recombinant human BMP-2 for treating complex tibial plateau fractures: a preliminary report. Clin Orthop Relat Res 467(12):3257–3262.  https://doi.org/10.1007/s11999-009-1039-8 Google Scholar
  56. 56.
    Tsiridis E, Upadhyay N, Giannoudis P (2007) Molecular aspects of fracture healing: which are the important molecules? Injury 38(Suppl 1):S11–S25Google Scholar
  57. 57.
    Keramaris NC, Calori GM, Nikolaou VS, Schemitsch EH, Giannoudis PV (2008) Fracture vascularity and bone healing: a systematic review of the role of VEGF. Injury 39(Suppl 2):S45–S57.  https://doi.org/10.1016/S0020-1383(08)70015-9 Google Scholar
  58. 58.
    Nauth A, Ristevski B, Li R, Schemitsch EH (2011) Growth factors and bone regeneration: how much bone can we expect? Injury 42(6):574–579.  https://doi.org/10.1016/j.injury.2011.03.034 Google Scholar
  59. 59.
    Flynn J, Fracture Repair and Bone Grafting. American Academy of Orthopaedic Surgeons (2011) OKU 10: orthopaedic knowledge update, S 11e21Google Scholar
  60. 60.
    Roffi A, Di Matteo B, Krishnakumar GS, Kon E, Filardo G (2017) Platelet-rich plasma for the treatment of bone defects: from pre-clinical rational to evidence in the clinical practice. A systematic review. Int Orthop 41(2):221–237.  https://doi.org/10.1007/s00264-016-3342-9 Google Scholar
  61. 61.
    Bender AW, Eckstein R, Wiesbach V, Zimmermann R (2012) Autologe Hämotherapieverfahren – medizinische Verfahren und rechtliche Grundlagen. Hämotherapie 18:23–37Google Scholar
  62. 62.
    Kühn KD, Berberich C, Bösebeck H (2018) Bone substitute materials as local drug carriers : Current status of substitutes of various origins. Orthopäde 47(1):10–23.  https://doi.org/10.1007/s00132-017-3505-4 Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • L. Leitner
    • 1
  • G. Gruber
    • 1
  • B. Lohberger
    • 1
  • H. Kaltenegger
    • 1
  • A. Leithner
    • 1
  • P. Sadoghi
    • 1
    Email author
  1. 1.Univ.-Klinik für Orthopädie und TraumatologieMedizinische Universität GrazGrazÖsterreich

Personalised recommendations