Advertisement

Der Orthopäde

, Volume 47, Issue 8, pp 621–627 | Cite as

Anatomie und Biomechanik des distalen Radioulnargelenks

  • C. K. Spies
  • M. Langer
  • L. P. Müller
  • J. Oppermann
  • S. Löw
  • F. Unglaub
Leitthema

Zusammenfassung

Hintergrund

Die differenzierte Gebrauchsfähigkeit der oberen Extremität basiert entscheidend auf der Umwendbewegung des Unterarms und damit auf dem Bewegungsausmaß des distalen Radioulnargelenks. Die Umwendbewegung des Unterarms ermöglicht erst den vollständigen und sinnvollen Einsatz der Hand, sodass eine reibungslose Bewältigung der alltäglichen Aktivitäten gewährleistet wird. Die Konfiguration des menschlichen distalen Radioulnargelenks ist das Ergebnis einer seit Jahrmillionen ablaufenden Evolution.

Anatomische Gegebenheiten

Der trianguläre fibrokartilaginäre Komplex ist der wichtigste Stabilisator dieses Gelenks, da die knöcherne Führung nur sehr limitiert ausgebildet ist. Zu diesem Komplex gehören die palmaren und dorsalen radioulnaren Ligamente, die durch ihre tiefen und oberflächlichen Bandanteile sowohl zentrisch in der Rotationsachse als auch exzentrisch ansetzen. Damit wird in jeder Rotationstellung eine Stabilisierung des Gelenks gewährleistet. Die Membrana interossea ist zusätzlich zu diesem Komplex ein weiterer relevanter Stabilisator, der auch für eine suffiziente Kraftübertragung von der Speiche auf die Elle verantwortlich ist. Das distale schräge Faserbündel innerhalb der Membrana interossea übernimmt dabei eine herausragende Stellung. Der Musculus pronator quadratus ist der relevante, dynamische Stabilisator. Der zweiköpfige Muskel wirkt aktiv einem Auseinanderweichen der Gelenkpartner entgegen. Der tiefe Muskelkopf ist in jeder Gelenkstellung aktiviert.

Schlüsselwörter

Handgelenk Kinematik Radioulnare Ligamente Rotation Triangulärer fibrokartilaginärer Komplex 

Abkürzungen

DRUG

Distales Radioulnargelenk

ECU

Extensor carpi ulnaris

PRUG

Proximales Radioulnargelenk

TFCC

Triangulärer fibrokartilaginärer Komplex

Anatomy and biomechanics of the distal radioulnar joint

Abstract

Background

The functionality of the upper extremity is decisively based on rotation of the forearm. The rotation depends on the extent of motion of the distal radioulnar joint. Rotation enables complete and focused usability of the hand in order to cope with daily activities. The configuration of the distal radioulnar joint has developed over millions of years of evolution.

Anatomic conditions

The triangular fibrocartilage complex is the crucial stabiliser of the latter joint since osseous structures are limited. The palmar and dorsal radioulnar ligaments belong to this complex. The superficial and deep parts of the latter ligaments insert both centrically in accordance to the axis of rotation and eccentrically. This arrangement guarantees stability of the joint throughout pronosupination. The interosseous membrane is a further relevant stabiliser that guarantees sufficient load transmission from radius to ulna. The distal oblique bundle of the interosseous membrane is outstanding in this context. The pronator quadratus muscle is the relevant dynamic stabiliser of the distal radioulnar joint. Contraction of the muscle prevents diastasis of the joint. The deep head of the muscle is always activated during pronosupination.

Keywords

Wrist joint Kinematics Radioulnar ligaments Rotation Triangular fibrocartilage complex 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. K. Spies, M. Langer, L. P. Müller, J. Oppermann, S. Löw und F. Unglaub geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Af Ekenstam F, Hagert CG (1985) Anatomical studies on the geometry and stability of the distal radio ulnar joint. Scand J Plast Reconstr Surg 19:17–25.  https://doi.org/10.3109/02844318509052861 CrossRefPubMedGoogle Scholar
  2. 2.
    Almquist EE (1992) Evolution of the distal radioulnar joint. Clin Orthop Relat Res 275:5–13Google Scholar
  3. 3.
    Atzei A, Luchetti R (2011) Foveal TFCC tear classification and treatment. Hand Clin 27:263–272.  https://doi.org/10.1016/j.hcl.2011.05.014 CrossRefPubMedGoogle Scholar
  4. 4.
    Forster RI, Sharkey NA, Szabo RM (1999) Forearm interosseous ligament isometry. J Hand Surg Am 24:538–545.  https://doi.org/10.1053/jhsu.1999.0538 CrossRefPubMedGoogle Scholar
  5. 5.
    Förstner H (1987) The distal radio-ulnar joint. Morphologic aspects and surgical orthopedic consequences. Unfallchirurg 90:512–517PubMedGoogle Scholar
  6. 6.
    Gofton WT, Gordon KD, Dunning CE et al (2004) Soft-tissue stabilizers of the distal radioulnar joint: An in vitro kinematic study. J Hand Surg 29:423–431.  https://doi.org/10.1016/j.jhsa.2004.01.020 CrossRefGoogle Scholar
  7. 7.
    Hagert CG (1994) Distal radius fracture and the distal radioulnar joint—anatomical considerations. Handchir Mikrochir Plast Chir 26:22–26PubMedGoogle Scholar
  8. 8.
    Hagert E, Hagert CG (2010) Understanding stability of the distal radioulnar joint through an understanding of its anatomy. Hand Clin 26:459–466.  https://doi.org/10.1016/j.hcl.2010.05.002 CrossRefPubMedGoogle Scholar
  9. 9.
    Haugstvedt J‑R, Berger R, Nakamura T et al (2006) Relative contributions of the ulnar attachments of the triangular fibrocartilage complex to the dynamic stability of the distal radioulnar joint. J Hand Surg Am 31:445–451.  https://doi.org/10.1016/j.jhsa.2005.11.008 CrossRefPubMedGoogle Scholar
  10. 10.
    Haugstvedt JR, Langer MF, Berger RA (2017) Distal radioulnar joint: functional anatomy, including pathomechanics. J Hand Surg.  https://doi.org/10.1177/1753193417693170 CrossRefGoogle Scholar
  11. 11.
    Hollister AM, Gellman H, Waters RL (1994) The relationship of the interosseous membrane to the axis of rotation of the forearm. Clin Orthop Relat Res 298:272–276Google Scholar
  12. 12.
    Iida A, Omokawa S, Moritomo H et al (2014) Effect of wrist position on distal radioulnar joint stability: a biomechanical study. J Orthop Res 32:1247–1251.  https://doi.org/10.1002/jor.22669 CrossRefPubMedGoogle Scholar
  13. 13.
    Johnson RK, Shrewsbury MM (1976) The pronator quadratus in motions and in stabilization of the radius and ulna at the distal radioulnar joint. J Hand Surg Am 1:205–209CrossRefPubMedGoogle Scholar
  14. 14.
    Kihara H, Short WH, Werner FW et al (1995) The stabilizing mechanism of the distal radioulnar joint during pronation and supination. J Hand Surg 20:930–936.  https://doi.org/10.1016/S0363-5023(05)80139-X CrossRefGoogle Scholar
  15. 15.
    Kirchberger MC, Unglaub F, Mühldorfer-Fodor M et al (2015) Update TFCC: histology and pathology, classification, examination and diagnostics. Arch Orthop Trauma Surg.  https://doi.org/10.1007/s00402-015-2153-6 PubMedCrossRefGoogle Scholar
  16. 16.
    Kitamura T, Moritomo H, Arimitsu S et al (2011) The biomechanical effect of the distal interosseous membrane on distal radioulnar joint stability: A preliminary anatomic study. J Hand Surg 36:1626–1630.  https://doi.org/10.1016/j.jhsa.2011.07.016 CrossRefGoogle Scholar
  17. 17.
    Kleinman WB (2007) Stability of the distal radioulna joint: biomechanics, pathophysiology, physical diagnosis, and restoration of function. What we have learned in 25 years. J Hand Surg 32:1086–1106.  https://doi.org/10.1016/j.jhsa.2007.06.014 CrossRefGoogle Scholar
  18. 18.
    Kleinman WB, Graham TJ (1998) The distal radioulnar joint capsule: clinical anatomy and role in posttraumatic limitation of forearm rotation. J Hand Surg Am 23:588–599.  https://doi.org/10.1016/S0363-5023(98)80043-9 CrossRefPubMedGoogle Scholar
  19. 19.
    Lewis OJ (1965) Evolutionary change in the primate wrist and inferior radio-ulnar joints. Anat Rec 151:275–285CrossRefPubMedGoogle Scholar
  20. 20.
    Linscheid RL (1992) Biomechanics of the distal radioulnar joint. Clin Orthop Relat Res 275:46–55Google Scholar
  21. 21.
    Lovejoy CO (1981) The origin of man. Science 211:341–350.  https://doi.org/10.1126/science.211.4480.341 CrossRefPubMedGoogle Scholar
  22. 22.
    Moritomo H (2013) Anatomy and clinical relevance of the ulnocarpal ligament. J Wrist Surg 2:186–189.  https://doi.org/10.1055/s-0033-1345023 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Moritomo H (2013) The distal oblique bundle of the distal Interosseous membrane of the forearm. J Wrist Surg 2:93–94.  https://doi.org/10.1055/s-0032-1333428 CrossRefGoogle Scholar
  24. 24.
    Moritomo H (2015) The function of the distal Interosseous membrane and its relevance to the stability of the distal radioulnar joint: an anatomical and biomechanical review. Handchir Mikrochir Plast Chir 47:277–280.  https://doi.org/10.1055/s-0035-1545348 CrossRefPubMedGoogle Scholar
  25. 25.
    Moritomo H, Noda K, Goto A et al (2009) Interosseous membrane of the forearm: length change of ligaments during forearm rotation. J Hand Surg 34:685–691.  https://doi.org/10.1016/j.jhsa.2009.01.015 CrossRefGoogle Scholar
  26. 26.
    Moriya T, Aoki M, Iba K et al (2009) Effect of triangular ligament tears on distal radioulnar joint instability and evaluation of three clinical tests: a biomechanical study. J Hand Surg 34:219–223.  https://doi.org/10.1177/1753193408098482 CrossRefGoogle Scholar
  27. 27.
    Noda K, Goto A, Murase T et al (2009) Interosseous membrane of the forearm: an anatomical study of ligament attachment locations. J Hand Surg 34:415–422.  https://doi.org/10.1016/j.jhsa.2008.10.025 CrossRefGoogle Scholar
  28. 28.
    O’Connor BL (1975) The functional morphology of the cercopithecoid wrist and inferior radioulnar joints, and their bearing on some problems in the evolution of the Hominoidea. Am J Phys Anthropol 43:113–121.  https://doi.org/10.1002/ajpa.1330430115 CrossRefPubMedGoogle Scholar
  29. 29.
    Palmer K, Werner FW (1984) Biomechanics of the distal radioulnar joint. Clin Orthop Relat Res 187:26–35Google Scholar
  30. 30.
    Palmer AK, Glisson RR, Werner FW (1982) Ulnar variance determination. J Hand Surg Am 7:376–379CrossRefPubMedGoogle Scholar
  31. 31.
    Palmer AK, Werner FW (1981) The triangular fibrocartilage complex of the wrist—anatomy and function. J Hand Surg Am 6:153–162.  https://doi.org/10.1097/00006534-198210000-00071 CrossRefPubMedGoogle Scholar
  32. 32.
    Pillukat T, Fuhrmann RA, Windolf J, van Schoonhoven J (2016) Die arthroskopisch unterstützte transkapsuläre Refixation des Discus triangularis am Handgelenk. Oper Orthop Traumatol 28:233–250.  https://doi.org/10.1007/s00064-016-0466-4 CrossRefPubMedGoogle Scholar
  33. 33.
    Richmond BG, Strait DS (2000) Evidence that humans evolved from a knuckle-walking ancestor. Nature 404:382–385.  https://doi.org/10.1038/35006045 CrossRefPubMedGoogle Scholar
  34. 34.
    Sakamoto K, Nasu H, Nimura A et al (2015) An anatomic study of the structure and innervation of the pronator quadratus muscle. Anat Sci Int 90:82–88.  https://doi.org/10.1007/s12565-014-0234-1 CrossRefPubMedGoogle Scholar
  35. 35.
    Schmelzer-Schmied N (2016) Arthroskopisch unterstützte ulnare Refixierung des TFCC mit Schraubanker. Oper Orthop Traumatol 28:251–262.  https://doi.org/10.1007/s00064-016-0455-7 CrossRefPubMedGoogle Scholar
  36. 36.
    Schuind F, An KN, Berglund L et al (1991) The distal radioulnar ligaments: a biomechanical study. J Hand Surg Am 16:1106–1114.  https://doi.org/10.1016/S0363-5023(10)80075-9 CrossRefPubMedGoogle Scholar
  37. 37.
    Semisch M, Hagert E, Garcia-Elias M et al (2016) Histological assessment of the triangular fibrocartilage complex. J Hand Surg 41:527–533.  https://doi.org/10.1177/1753193415618391 CrossRefGoogle Scholar
  38. 38.
    Shaaban H, Giakas G, Bolton M et al (2004) The distal radioulnar joint as a load-bearing mechanism - a biomechanical study. J Hand Surg 29:85–95.  https://doi.org/10.1016/j.jhsa.2003.10.020 CrossRefGoogle Scholar
  39. 39.
    Shaaban H, Giakas G, Bolton M et al (2007) Contact area inside the distal radioulnar joint: Effect of axial loading and position of the forearm. Clin Biomech 22:313–318.  https://doi.org/10.1016/j.clinbiomech.2006.05.010 CrossRefGoogle Scholar
  40. 40.
    Skahen JR, Palmer AK, Werner FW, Fortino MD (1997) The interosseous membrane of the forearm: anatomy and function. J Hand Surg Am 22:981–985.  https://doi.org/10.1016/S0363-5023(97)80036-6 CrossRefPubMedGoogle Scholar
  41. 41.
    Stuart PR (1996) Pronator quadratus revisited. J Hand Surg Br 21:714–722CrossRefPubMedGoogle Scholar
  42. 42.
    Stuart PR, Berger RA, Linscheid RL, An KN (2000) The dorsopalmar stability of the distal radioulnar joint. J Hand Surg 25:689–699.  https://doi.org/10.1053/jhsu.2000.9418 CrossRefGoogle Scholar
  43. 43.
    Tolat AR, Stanley JK, Trail IA (1996) A cadaveric study of the anatomy and stability of the distal radioulnar joint in the coronal and transverse planes. J Hand Surg Eur Vol 21:587–594.  https://doi.org/10.1016/S0266-7681(96)80136-7 CrossRefGoogle Scholar
  44. 44.
    Watanabe H, Berger RA, Berglund LJ et al (2005) Contribution of the interosseous membrane to distal radioulnar joint constraint. J Hand Surg 30:1164–1171.  https://doi.org/10.1016/j.jhsa.2005.06.013 CrossRefGoogle Scholar
  45. 45.
    Xu J, Tang JB (2009) In Vivo Changes in Lengths of the Ligaments Stabilizing the Distal Radioulnar Joint. J Hand Surg 34:40–45.  https://doi.org/10.1016/j.jhsa.2008.08.006 CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • C. K. Spies
    • 1
  • M. Langer
    • 2
  • L. P. Müller
    • 3
  • J. Oppermann
    • 3
  • S. Löw
    • 4
  • F. Unglaub
    • 1
    • 5
  1. 1.Abteilung für HandchirurgieVulpius KlinikBad RappenauDeutschland
  2. 2.Klinik für Unfall‑, Hand- und WiederherstellungschirurgieUniversitätsklinikum MünsterMünsterDeutschland
  3. 3.Klinik und Poliklinik für Orthopädie und UnfallchirurgieUniversitätsklinikum KölnKölnDeutschland
  4. 4.Praxis für Handchirurgie und UnfallchirurgieBad MergentheimDeutschland
  5. 5.Medizinische Fakultät MannheimUniversität HeidelbergMannheimDeutschland

Personalised recommendations