Advertisement

Der Orthopäde

, Volume 48, Issue 2, pp 179–192 | Cite as

Lumbale Spinalkanalstenose

Von der Diagnose bis zur richtigen Therapie
  • A. BenditzEmail author
  • J. Grifka
CME

Zusammenfassung

Stetig steigt die Zahl der Patienten mit der Diagnose Spinalkanalstenose, gleichzeitig wächst die Erwartungshaltung der Patienten. Trotzdem fehlen Studiendaten, welche Therapie wann angebracht ist. Das Behandlungskonzept ergibt sich meist aus der Erfahrung des Behandlers und dessen klinischem Schwerpunkt. Häufig korrelieren die in der Magnetresonanztomographie (MRT) beschriebenen Befunde nicht mit den Beschwerden des Patienten. Meist sollte mit einem konservativen, am besten multimodalen Therapieansatz begonnen werden. Stärkere Schmerzen mit ausgeprägter Claudicatio-spinalis-Symptomatik und erfolgloser konservativer Therapie sollten operativ therapiert werden. Absolute Operationsindikationen wie ein Kauda-Konus-Syndrom sind selten. Ziel aller angewandten Operationsverfahren ist die Dekompression des Spinalkanals, ohne dabei die Stabilität des Bewegungssegments zu gefährden. Eine Instabilität kann eine zusätzliche Fusion notwendig machen.

Schlüsselwörter

Mikrodekompression Lumboischialgie Claudicatio spinalis Spondylodese Multimodaler Therapieansatz 

Lumbar spinal stenosis

From the diagnosis to the correct treatment

Abstract

The number of patients with the diagnosis of lumbar spinal stenosis (LSS) is steadily increasing and simultaneously, the patients’ expectations are also increasing. Nevertheless, evidence from studies for the appropriate treatment is still lacking. Treatment options mainly result from the practitioner ’s experience and the clinical focus. The findings described in magnetic resonance imaging (MRI) often do not correlate with the patient’s symptoms. Basically, the treatment should be started with a conservative treatment and preferably with a multimodal approach. Severe pain with extensive neurogenic claudication symptoms and unsuccessful conservative treatment should be treated surgically. Absolute indications for surgery, such as a conus-cauda syndrome are rare. The goal of all surgical procedures is to decompress the spinal canal without compromising the stability of the motion segment. Instability can also make an additional fusion necessary.

Keywords

Microdecompression Sciatica Neurogenic claudication Spinal fusion Multimodal treatment approach 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

A. Benditz und J. Grifka geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren. Alle Patienten, die über Bildmaterial oder anderweitige Angaben innerhalb des Manuskripts zu identifizieren sind, haben hierzu ihre schriftliche Einwilligung gegeben. Im Falle von nicht mündigen Patienten liegt die Einwilligung eines Erziehungsberechtigten oder des gesetzlich bestellten Betreuers vor.

Literatur

  1. 1.
    Nimptsch U, Bolczek C, Spoden M et al (2018) Volume growth of inpatient treatments for spinal disease—analysis of German nationwide hospital discharge data from 2005 to 2014. Z Orthop Unfall 156:175–183.  https://doi.org/10.1055/s-0043-119898 CrossRefGoogle Scholar
  2. 2.
    Watters WC, Baisden J, Gilbert TJ et al (2008) Degenerative lumbar spinal stenosis: an evidence-based clinical guideline for the diagnosis and treatment of degenerative lumbar spinal stenosis. Spine J 8:305–310.  https://doi.org/10.1016/j.spinee.2007.10.033 CrossRefGoogle Scholar
  3. 3.
    de Schepper EIT, Koes BW, Veldhuizen EFH et al (2016) Prevalence of spinal pathology in patients presenting for lumbar MRI as referred from general practice. Fam Pract 33:51–56.  https://doi.org/10.1093/fampra/cmv097 CrossRefGoogle Scholar
  4. 4.
    de Schepper EIT, Overdevest GM, Suri P et al (2013) Diagnosis of lumbar spinal stenosis: an updated systematic review of the accuracy of diagnostic tests. Spine (Phila Pa 1976) 38:E469–E481.  https://doi.org/10.1097/BRS.0b013e31828935ac CrossRefGoogle Scholar
  5. 5.
    Marawar SV, Ordway NR, Madom IA et al (2016) Comparison of surgeon rating of severity of stenosis using magnetic resonance imaging, dural cross-sectional area, and functional outcome scores. World Neurosurg 96:165–170.  https://doi.org/10.1016/j.wneu.2016.08.093 CrossRefGoogle Scholar
  6. 6.
    Trigg SD, Devilbiss Z (2017) Spine conditions: lumbar spinal stenosis. FP Essent 461:21–25Google Scholar
  7. 7.
    Andreisek G, Imhof M, Wertli M et al (2013) A systematic review of semiquantitative and qualitative radiologic criteria for the diagnosis of lumbar spinal stenosis. AJR Am J Roentgenol 201:W735–W746.  https://doi.org/10.2214/AJR.12.10163 CrossRefGoogle Scholar
  8. 8.
    Cheung KMC, Karppinen J, Chan D et al (2009) Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Phila Pa 1976) 34:934–940.  https://doi.org/10.1097/BRS.0b013e3181a01b3f CrossRefGoogle Scholar
  9. 9.
    Jensen MC, Brant-Zawadzki MN, Obuchowski N et al (1994) Magnetic resonance imaging of the lumbar spine in people without back pain. N Engl J Med 331:69–73.  https://doi.org/10.1056/NEJM199407143310201 CrossRefGoogle Scholar
  10. 10.
    Statistisches Bundesamt (2012) DRG-StatistikGoogle Scholar
  11. 11.
    Suri P, Miyakoshi A, Hunter DJ et al (2011) Does lumbar spinal degeneration begin with the anterior structures? A study of the observed epidemiology in a community-based population. BMC Musculoskelet Disord 12:202.  https://doi.org/10.1186/1471-2474-12-202 CrossRefGoogle Scholar
  12. 12.
    Yoshida M, Shima K, Taniguchi Y et al (1992) Hypertrophied ligamentum flavum in lumbar spinal canal stenosis. Pathogenesis and morphologic and immunohistochemical observation. Spine (Phila Pa 1976) 17:1353–1360CrossRefGoogle Scholar
  13. 13.
    Chen Y‑TT, Wei J‑DD, Wang J‑PP et al (2011) Isolation of mesenchymal stem cells from human ligamentum flavum: implicating etiology of ligamentum flavum hypertrophy. Spine (Phila Pa 1976) 36:E1193–E1200.  https://doi.org/10.1097/BRS.0b013e3182053f58 CrossRefGoogle Scholar
  14. 14.
    Park JB, Chang H, Lee JK (2001) Quantitative analysis of transforming growth factor-beta 1 in ligamentum flavum of lumbar spinal stenosis and disc herniation. Spine (Phila Pa 1976) 26:E492–E495CrossRefGoogle Scholar
  15. 15.
    Zhong ZM, Chen JT (2009) Overexpression of transforming growth factor-beta1 in degenerative ligamentum flavum. Nan Fang Yi Ke Da Xue Xue Bao 29:316–318Google Scholar
  16. 16.
    Kosaka H, Sairyo K, Biyani A et al (2007) Pathomechanism of loss of elasticity and hypertrophy of lumbar ligamentum flavum in elderly patients with lumbar spinal canal stenosis. Spine (Phila Pa 1976) 32:2805–2811.  https://doi.org/10.1097/BRS.0b013e31815b650f CrossRefGoogle Scholar
  17. 17.
    Rispoli R, Mastrostefano R, Brunelli F (2010) Morphology and TGF-beta1 concentration analysis of ligamentum flavum in patients with lumbar canal stenosis and lumbar disc herniation. Neuroradiol J 23:347–353CrossRefGoogle Scholar
  18. 18.
    Altinkaya N, Yildirim T, Demir S et al (2011) Factors associated with the thickness of the ligamentum flavum: is ligamentum flavum thickening due to hypertrophy or buckling? Spine (Phila Pa 1976) 36:E1093–E1097.  https://doi.org/10.1097/BRS.0b013e318203e2b5 CrossRefGoogle Scholar
  19. 19.
    Kobayashi S, Kokubo Y, Uchida K et al (2005) Effect of lumbar nerve root compression on primary sensory neurons and their central branches: changes in the nociceptive neuropeptides substance P and somatostatin. Spine (Phila Pa 1976) 30:276–282CrossRefGoogle Scholar
  20. 20.
    Kobayashi S, Baba H, Uchida K et al (2005) Blood circulation of cauda equina and nerve root. Clin Calcium 15:63–72Google Scholar
  21. 21.
    Chosa E, Sekimoto T, Kubo S, Tajima N (2005) Evaluation of circulatory compromise in the leg in lumbar spinal canal stenosis. Clin Orthop Relat Res:129–133.  https://doi.org/10.1097/01.blo.0000149811.55727.a5 Google Scholar
  22. 22.
    Morishita Y, Hida S, Naito M et al (2009) Neurogenic intermittent claudication in lumbar spinal canal stenosis: the clinical relationship between the local pressure of the intervertebral foramen and the clinical findings in lumbar spinal canal stenosis. J Spinal Disord Tech 22:130–134.  https://doi.org/10.1097/BSD.0b013e318167b054 CrossRefGoogle Scholar
  23. 23.
    Igawa T, Katsuhira J, Hosaka A et al (2018) Kinetic and kinematic variables affecting trunk flexion during level walking in patients with lumbar spinal stenosis. PLoS ONE 13:e197228.  https://doi.org/10.1371/journal.pone.0197228 CrossRefGoogle Scholar
  24. 24.
    Hoang S, Mesfin FB (2018) Spinal Stenosis. StatPearls. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK441989/
  25. 25.
    Pourtaheri S, Sharma A, Savage J et al (2017) Pelvic retroversion: a compensatory mechanism for lumbar stenosis. J Neurosurg Spine 27:137–144.  https://doi.org/10.3171/2017.2.SPINE16963 CrossRefGoogle Scholar
  26. 26.
    Nadeau M, Rosas-Arellano MP, Gurr KR et al (2013) The reliability of differentiating neurogenic claudication from vascular claudication based on symptomatic presentation. Can J Surg 56:372–377CrossRefGoogle Scholar
  27. 27.
    Porter RW (1996) Spinal stenosis and neurogenic claudication. Spine (Phila Pa 1976) 21:2046–2052CrossRefGoogle Scholar
  28. 28.
    McKillop AB, Carroll LJ, Battié MC (2014) Depression as a prognostic factor of lumbar spinal stenosis: a systematic review. Spine J 14:837–846.  https://doi.org/10.1016/j.spinee.2013.09.052 CrossRefGoogle Scholar
  29. 29.
    Pakarinen M, Vanhanen S, Sinikallio S et al (2014) Depressive burden is associated with a poorer surgical outcome among lumbar spinal stenosis patients: a 5-year follow-up study. Spine J.  https://doi.org/10.1016/j.spinee.2014.01.047 Google Scholar
  30. 30.
    Herrmann C (1997) International experiences with the hospital anxiety and depression scale—a review of validation data and clinical results. J Psychosom Res 42:17–41CrossRefGoogle Scholar
  31. 31.
    Nilges P, Essau C (2015) Depression, anxiety and stress scales: DASS—a screening procedure not only for pain patients. Schmerz 29:649–657.  https://doi.org/10.1007/s00482-015-0019-z CrossRefGoogle Scholar
  32. 32.
    van Rijn RM, Wassenaar M, Verhagen AP et al (2012) Computed tomography for the diagnosis of lumbar spinal pathology in adult patients with low back pain or sciatica: a diagnostic systematic review. Eur Spine J 21:228–239.  https://doi.org/10.1007/s00586-011-2012-2 CrossRefGoogle Scholar
  33. 33.
    Wassenaar M, van Rijn RM, van Tulder MW et al (2012) Magnetic resonance imaging for diagnosing lumbar spinal pathology in adult patients with low back pain or sciatica: a diagnostic systematic review. Eur Spine J 21:220–227.  https://doi.org/10.1007/s00586-011-2019-8 CrossRefGoogle Scholar
  34. 34.
    Ko S (2017) Correlations between sedimentation sign, dural sac cross-sectional area, and clinical symptoms of degenerative lumbar spinal stenosis. Eur Spine J.  https://doi.org/10.1007/s00586-017-5374-2 Google Scholar
  35. 35.
    Splettstößer A, Khan MF, Zimmermann B et al (2017) Correlation of lumbar lateral recess stenosis in magnetic resonance imaging and clinical symptoms. World J Radiol 9:223–229.  https://doi.org/10.4329/wjr.v9.i5.223 CrossRefGoogle Scholar
  36. 36.
    Schizas C, Theumann N, Burn A et al (2010) Qualitative grading of severity of lumbar spinal stenosis based on the morphology of the dural sac on magnetic resonance images. Spine (Phila Pa 1976) 35:1919–1924.  https://doi.org/10.1097/BRS.0b013e3181d359bd CrossRefGoogle Scholar
  37. 37.
    Chou R, Atlas SJ, Stanos SP, Rosenquist RW (2009) Nonsurgical interventional therapies for low back pain: a review of the evidence for an American Pain Society clinical practice guideline. Spine (Phila Pa 1976) 34:1078–1093.  https://doi.org/10.1097/BRS.0b013e3181a103b1 CrossRefGoogle Scholar
  38. 38.
    Chou R, Atlas SJ, Stanos SPDO, Rosenquist RW (2009) Nonsurgical Interventional Therapies for Low Back Pain: A Review of the Evidence for an American Pain Society Clinical Practice Guideline. Spine 34:1078–1093.  https://doi.org/10.1097/BRS.0b013e3181a103b1 (May 1, 2009)CrossRefGoogle Scholar
  39. 39.
    Chang Y, Singer DE, Wu YA et al (2005) The effect of surgical and nonsurgical treatment on longitudinal outcomes of lumbar spinal stenosis over 10 years. J Am Geriatr Soc 53:785–792.  https://doi.org/10.1111/j.1532-5415.2005.53254.x CrossRefGoogle Scholar
  40. 40.
    Atlas SJ, Keller RB, Wu YA et al (2005) Long-term outcomes of surgical and nonsurgical management of sciatica secondary to a lumbar disc herniation: 10 year results from the Maine Lumbar Spine Study. Spine 30:927–935 (April 15, 2005)CrossRefGoogle Scholar
  41. 41.
    van Tulder M, Becker A, Bekkering T et al (2006) Chapter 3 European guidelines for the management of acute nonspecific low back pain in primary care. Eur Spine J 15:s169–s191.  https://doi.org/10.1007/s00586-006-1071-2 CrossRefGoogle Scholar
  42. 42.
    Lurie J, Tomkins-Lane C (2016) Management of lumbar spinal stenosis. BMJ 352:h6234CrossRefGoogle Scholar
  43. 43.
    Schiltenwolf M (2014) Degenerative lumbar spinal stenosis in older people—current treatment options. Dtsch Arztebl Int.  https://doi.org/10.3238/arztebl.2014.0039a Google Scholar
  44. 44.
    Faber F, Benditz A, Boluki D, Grifka J (2018) The application of different injection methods for cervical and lumbar syndromes. Schmerz 32:65–85.  https://doi.org/10.1007/s00482-017-0264-4 CrossRefGoogle Scholar
  45. 45.
    Grifka J, Benditz A, Boluki D (2017) Injection therapy for cervical and lumbar syndromes. Orthopade.  https://doi.org/10.1007/s00132-016-3382-2 Google Scholar
  46. 46.
    Brunner M, Schwarz T, Zeman F et al (2018) Efficiency and predictive parameters of outcome of a multimodal pain management concept with spinal injections in patients with low back pain: a retrospective study of 445 patients. Arch Orthop Trauma Surg.  https://doi.org/10.1007/s00402-018-2916-y Google Scholar
  47. 47.
    Benditz A, Loher M, Boluki D et al (2017) Positive medium-term influence of multimodal pain management on socioeconomic factors and health care utilization in patients with lumbar radiculopathy: A prospective study. J Pain Res.  https://doi.org/10.2147/JPR.S128090 Google Scholar
  48. 48.
    Benditz A, Madl M, Loher M et al (2016) Prospective medium-term results of multimodal pain management in patients with lumbar radiculopathy. Sci Rep 6:28187.  https://doi.org/10.1038/srep28187 CrossRefGoogle Scholar
  49. 49.
    Toyone T, Tanaka T, Kato D et al (2005) Patients’ expectations and satisfaction in lumbar spine surgery. Spine (Phila Pa 1976) 30:2689–2694CrossRefGoogle Scholar
  50. 50.
    Amaral V, Marchi L, Martim H et al (2017) Influence of psychosocial distress in the results of elective lumbar spine surgery. J Spine Surg 3:371–378.  https://doi.org/10.21037/jss.2017.08.05 CrossRefGoogle Scholar
  51. 51.
    Zhang C, Zhou H‑XX, Feng S‑QQ et al (2013) The efficacy analysis of selective decompression of lumbar root canal of elderly lumbar spinal stenosis. Zhonghua Wai Ke Za Zhi 51:816–820Google Scholar
  52. 52.
    Liljenqvist U (2014) Die lumbale Spinalkanalstenose. Orthop Unfallchir Up2date 152:71–85.  https://doi.org/10.1055/s-0033-1357910 CrossRefGoogle Scholar
  53. 53.
    Pintauro M, Duffy A, Vahedi P et al (2017) Interspinous implants: are the new implants better than the last generation? A review. Curr Rev Musculoskelet Med 10:189–198.  https://doi.org/10.1007/s12178-017-9401-z CrossRefGoogle Scholar
  54. 54.
    Udeh BL, Costandi S, Dalton JE et al (2014) The 2‑Year Cost-Effectiveness of 3 options to Treat Lumbar Spinal Stenosis Patients. Pain Pract.  https://doi.org/10.1111/papr.12160 Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Orthopädische Klinik für die Universität Regensburg im Asklepios Klinikum Bad AbbachUniversität RegensburgBad AbbachDeutschland

Personalised recommendations