Advertisement

Der Orthopäde

, Volume 41, Issue 10, pp 844–852 | Cite as

Grundlagen zur tribologischen Analyse von Endoprothesen

  • J.P. Kretzer
  • C. Zietz
  • C. Schröder
  • J. Reinders
  • L. Middelborg
  • A. Paulus
  • R. Sonntag
  • R. Bader
  • S. Utzschneider
Leitthema

Zusammenfassung

Zur tribologischen Charakterisierung künstlicher Gelenke stehen derzeit verschiedene experimentelle Methoden zur Verfügung, die untereinander allerdings nur begrenzt vergleichbar sind. Auch sind die verwendeten Testbedingungen nur eingeschränkt auf die In-vivo-Situation übertragbar. Dies begründet sich auf die unterschiedlichen eingesetzten Verschleißsimulatorkonzepte sowie auf z. T. ungenügende Abbildung von klinischen Extremsituationen.

Die aktuellen wissenschaftlichen Methoden und Verfahren tribologischer Untersuchungen an künstlichen Gelenken werden in der vorliegenden Arbeit dargestellt. Zudem werden die biologischen Wirkungen von Verschleißprodukten beschrieben, um den Kliniker in die Lage zu versetzen, tribologische Studien und wissenschaftliche Ergebnisse zu hinterfragen und unter Berücksichtigung der klinischen Situation gezielter interpretieren zu können.

Schlüsselwörter

Verschleiß Gelenkersatz Implantattestung Partikel Biologische Aktivität 

Principles of tribological analysis of endoprostheses

Abstract

For the tribological characterization of artificial joints, various experimental methods are currently available. However, the in vitro test conditions applied are only comparable in a limited way and transferability to the in vivo situation is also restricted. This is due to the different wear simulation concepts used and partly insufficient simulation of clinical worst case situations. In the present paper current scientific methods and procedures for tribological testing of artificial joints are presented. In addition, the biological effects of wear products are described enabling clinicians to challenge tribological studies and to facilitate specific interpretation of scientific results taking the clinical situation into account.

Keywords

Wear Arthroplasty Implant testing Particle Biological activity 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Al-Saffar N, Revell PA (1999) Pathology of the bone-implant interfaces. J Long Term Eff Med Implants 9:319–347PubMedGoogle Scholar
  2. 2.
    Antoniou J, Zukor DJ, Mwale F et al (2008) Metal ion levels in the blood of patients after hip resurfacing: a comparison between twenty-eight and thirty-six-millimeter-head metal-on-metal prostheses. J Bone Joint Surg [Am] 90(3):142–148Google Scholar
  3. 3.
    Barbour PS, Barton DC, Fisher J (1997) The influence of stress conditions on the wear of UHMWPE for total joint replacements. J Mater Sci Mater Med 8:603–611PubMedCrossRefGoogle Scholar
  4. 4.
    Bishop NE, Waldow F, Morlock MM (2008) Friction moments of large metal-on-metal hip joint bearings and other modern designs. Med Eng Phys 30:1057–1064PubMedCrossRefGoogle Scholar
  5. 5.
    Bragdon CR, Jasty M, Muratoglu OK et al (2003) Third-body wear of highly cross-linked polyethylene in a hip simulator. J Arthroplasty 18:553–561PubMedCrossRefGoogle Scholar
  6. 6.
    Campbell P, Ma S, Yeom B et al (1995) Isolation of predominantly submicron-sized UHMWPE wear particles from periprosthetic tissues. J Biomed Mater Res 29(1):127–131PubMedCrossRefGoogle Scholar
  7. 7.
    Catelas I, Campbell PA, Dorey F et al (2003) Semi-quantitative analysis of cytokines in MM THR tissues and their relationship to metal particles. Biomaterials 24:4785–4797PubMedCrossRefGoogle Scholar
  8. 8.
    Catelas I, Wimmer MA (2011) New insights into wear and biological effects of metal-on-metal bearings. J Bone Joint Surg [Am] 93(2):76–83Google Scholar
  9. 9.
    Catelas I, Wimmer MA, Utzschneider S (2011) Polyethylene and metal wear particles: characteristics and biological effects. Semin Immunopathol 33:257–271PubMedCrossRefGoogle Scholar
  10. 10.
    Chang CH, Fang HW, Ho YC et al (2008) Chondrocyte acting as phagocyte to internalize polyethylene wear particles and leads to the elevations of osteoarthritis associated NO and PGE2. Biochem Biophys Res Commun 369:884–888PubMedCrossRefGoogle Scholar
  11. 11.
    De Haan R, Pattyn C, Gill HS et al (2008) Correlation between inclination of the acetabular component and metal ion levels in metal-on-metal hip resurfacing replacement. J Bone Joint Surg [Br] 90-B:1291–1297Google Scholar
  12. 12.
    Engh CA Jr, Macdonald SJ, Sritulanondha S et al (2009) 2008 John Charnley award: metal ion levels after metal-on-metal total hip arthroplasty: a randomized trial. Clin Orthop Relat Res 467:101–111PubMedCrossRefGoogle Scholar
  13. 13.
    Ezzet KA, Hermida JC, Steklov N et al (2012) Wear of polyethylene against oxidized zirconium femoral components effect of aggressive kinematic conditions and malalignment in total knee arthroplasty. J Arthroplasty 27(1):116–121PubMedCrossRefGoogle Scholar
  14. 14.
    Fang HW, Hsu SM, Sengers JV (2003) Generation of narrowly distributed ultra-high-molecular-weight polyethylene particles by surface texturing techniques. J Biomed Mater Res B Appl Biomater 67:741–749PubMedCrossRefGoogle Scholar
  15. 15.
    Fisher J, McEwen HM, Tipper JL et al (2004) Wear, debris, and biologic activity of cross-linked polyethylene in the knee: benefits and potential concerns. Clin Orthop Relat Res 428:114–119PubMedCrossRefGoogle Scholar
  16. 16.
    Gallo J, Slouf M, Goodman SB (2010) The relationship of polyethylene wear to particle size, distribution, and number: A possible factor explaining the risk of osteolysis after hip arthroplasty. J Biomed Mater Res B Appl Biomater 94:171–177PubMedGoogle Scholar
  17. 17.
    Galvin AL, Kang L, Udofia I et al (2009) Effect of conformity and contact stress on wear in fixed-bearing total knee prostheses. J Biomech 42:1898–1902PubMedCrossRefGoogle Scholar
  18. 18.
    Glyn-Jones S, Pandit H, Kwon YM et al (2009) Risk factors for inflammatory pseudotumour formation following hip resurfacing. J Bone Joint Surg [Br] 91(12):1566–1574Google Scholar
  19. 19.
    Goodman SB (2007) Wear particles, periprosthetic osteolysis and the immune system. Biomaterials 28:5044–5048PubMedCrossRefGoogle Scholar
  20. 20.
    Green TR, Fisher J, Matthews JB et al (2000) Effect of size and dose on bone resorption activity of macrophages by in vitro clinically relevant ultra high molecular weight polyethylene particles. J Biomed Mater Res 53:490–497PubMedCrossRefGoogle Scholar
  21. 21.
    Grupp TM, Stulberg D, Kaddick C et al (2009) Fixed bearing knee congruency – influence on contact mechanics, abrasive wear and kinematics. Int J Artif Organs 32:213–223PubMedGoogle Scholar
  22. 22.
    Grupp TM, Utzschneider S, Schroder C et al (2010) Biotribology of alternative bearing materials for unicompartmental knee arthroplasty. Acta Biomater 6:3601–3610PubMedCrossRefGoogle Scholar
  23. 23.
    Hallab NJ, Anderson S, Caicedo M et al (2005) Effects of soluble metals on human peri-implant cells. J Biomed Mater Res A 74:124–140PubMedGoogle Scholar
  24. 24.
    Hallab NJ, Jacobs JJ (2009) Biologic effects of implant debris. Bull NYU Hosp Jt Dis 67:182–188PubMedGoogle Scholar
  25. 25.
    Harman MK, Desjardins J, Benson L et al (2009) Comparison of polyethylene tibial insert damage from in vivo function and in vitro wear simulation. J Orthop Res 27:540–548PubMedCrossRefGoogle Scholar
  26. 26.
    Heisel C, Kleinhans JA, Menge M et al (2009) Ten different hip resurfacing systems: biomechanical analysis of design and material properties. Int Orthop 33:939–943PubMedCrossRefGoogle Scholar
  27. 27.
    Heisel C, Streich N, Krachler M et al (2008) Characterization of the running-in period in total hip resurfacing arthroplasty: an in vivo and in vitro metal ion analysis. J Bone Joint Surg [Am] 90(3):125–133Google Scholar
  28. 28.
    Illgen RL II, Forsythe TM, Pike JW et al (2008) Highly crosslinked vs conventional polyethylene particles – an in vitro comparison of biologic activities. J Arthroplasty 23(5):721–731PubMedCrossRefGoogle Scholar
  29. 29.
    Koreny T, Tunyogi-Csapo M, Gal I et al (2006) The role of fibroblasts and fibroblast-derived factors in periprosthetic osteolysis. Arthritis Rheum 54:3221–3232PubMedCrossRefGoogle Scholar
  30. 30.
    Kretzer JP (2010) Biotribology of total hip replacement: the metal-on-metal articulation. In: Davim JP (ed) Biotribology. Wiley, Hoboken, pp 1–49Google Scholar
  31. 31.
    Kretzer JP, Jakubowitz E, Reinders J et al (2011) Wear analysis of unicondylar mobile bearing and fixed bearing knee systems: a knee simulator study. Acta Biomater 7:710–715PubMedCrossRefGoogle Scholar
  32. 32.
    Kretzer JP, Jakubowitz E, Sonntag R et al (2010) Effect of joint laxity on polyethylene wear in total knee replacement. J Biomech 43:1092–1096PubMedCrossRefGoogle Scholar
  33. 33.
    Kretzer J, Krachler M, Reinders J et al (2010) Determination of low wear rates in metal-on-metal hip joint replacements based on ultra trace element analysis in simulator studies. Tribol Lett 37:23–29CrossRefGoogle Scholar
  34. 34.
    Langton DJ, Jameson SS, Joyce TJ et al (2010) Early failure of metal-on-metal bearings in hip resurfacing and large-diameter total hip replacement: a consequence of excess wear. J Bone Joint Surg [Br] 92(1):38–46Google Scholar
  35. 35.
    Libouban H, Massin P, Gaudin C et al (2009) Migration of wear debris of polyethylene depends on bone microarchitecture. J Biomed Mater Res B Appl Biomater 90:730–737PubMedGoogle Scholar
  36. 36.
    Malik A, Maheshwari A, Dorr LD (2007) Impingement with total hip replacement. J Bone Joint Surg [Am] 89:1832–1842Google Scholar
  37. 37.
    Manson TT, Kelly NH, Lipman JD et al (2010) Unicondylar knee retrieval analysis. J Arthroplasty 25(6):108–111PubMedCrossRefGoogle Scholar
  38. 38.
    Mcewen HM, Barnett PI, Bell CJ et al (2005) The influence of design, materials and kinematics on the in vitro wear of total knee replacements. J Biomech 38:357–365PubMedCrossRefGoogle Scholar
  39. 39.
    McKellop HA (2007) The lexicon of polyethylene wear in artificial joints. Biomaterials 28:5049–5057PubMedCrossRefGoogle Scholar
  40. 40.
    Niedzwiecki S, Klapperich C, Short J et al (2001) Comparison of three joint simulator wear debris isolation techniques: acid digestion, base digestion, and enzyme cleavage. J Biomed Mater Res 56:245–249PubMedCrossRefGoogle Scholar
  41. 41.
    Purdue PE, Koulouvaris P, Potter HG et al (2007) The cellular and molecular biology of periprosthetic osteolysis. Clin Orthop Relat Res 454:251–261PubMedCrossRefGoogle Scholar
  42. 42.
    Ragab AA, Nalepka JL, Bi Y et al (2002) Cytokines synergistically induce osteoclast differentiation: support by immortalized or normal calvarial cells. Am J Physiol Cell Physiol 283:C679–687PubMedGoogle Scholar
  43. 43.
    Revell PA (2008) The combined role of wear particles, macrophages and lymphocytes in the loosening of total joint prostheses. J R Soc Interface 5:1263–1278PubMedCrossRefGoogle Scholar
  44. 44.
    Schmalzried TP, Jasty M, Harris WH (1992) Periprosthetic bone loss in total hip arthroplasty. Polyethylene wear debris and the concept of the effective joint space. J Bone Joint Surg [Am] 74(6):849–863Google Scholar
  45. 45.
    Scholes SC, Unsworth A (2006) The effects of proteins on the friction and lubrication of artificial joints. Proc Inst Mech Eng H 220:687–693PubMedCrossRefGoogle Scholar
  46. 46.
    Sieving A, Wu B, Mayton L et al (2003) Morphological characteristics of total joint arthroplasty-derived ultra-high molecular weight polyethylene (UHMWPE) wear debris that provoke inflammation in a murine model of inflammation. J Biomed Mater Res A 64:457–464PubMedCrossRefGoogle Scholar
  47. 47.
    Tsukamoto R, Chen S, Asano T et al (2006) Improved wear performance with crosslinked UHMWPE and zirconia implants in knee simulation. Acta Orthop 77:505–511PubMedCrossRefGoogle Scholar
  48. 48.
    Underwood R, Matthies A, Cann P et al (2011) A comparison of explanted articular surface replacement and Birmingham hip resurfacing components. J Bone Joint Surg [Br] 93:1169–1177Google Scholar
  49. 49.
    Urban RM, Jacobs JJ, Tomlinson MJ et al (2000) Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg [Am] 82(4):457–476Google Scholar
  50. 50.
    Utzschneider S (2010) Verwendung von crosslinked Polyethylenen in der Knieendoprothetik und deren biologische Aktivität in vivo. Habilitationsschrift. Ludwigs-Maximilians-Universität München, Campus GroßhadernGoogle Scholar
  51. 51.
    Utzschneider S, Becker F, Grupp TM et al (2010) Inflammatory response against different carbon fiber-reinforced PEEK wear particles compared with UHMWPE in vivo. Acta Biomater 6:4296–4304PubMedCrossRefGoogle Scholar
  52. 52.
    Utzschneider S, Harrasser N, Schroeder C et al (2009) Wear of contemporary total knee replacements – a knee simulator study of six current designs. Clin Biomech (Bristol, Avon) 24:583–588Google Scholar
  53. 53.
    Utzschneider S, Paulus A, Datz JC et al (2009) Influence of design and bearing material on polyethylene wear particle generation in total knee replacement. Acta Biomater 5:2495–2502PubMedCrossRefGoogle Scholar
  54. 54.
    Visentin M, Stea S, Squarzoni S et al (2004) A new method for isolation of polyethylene wear debris from tissue and synovial fluid. Biomaterials 25:5531–5537PubMedCrossRefGoogle Scholar
  55. 55.
    Visuri T, Pulkkinen P, Paavolainen P et al (2010) Cancer risk is not increased after conventional hip arthroplasty. Acta Orthop 81:77–81PubMedCrossRefGoogle Scholar
  56. 56.
    Walter WL, Insley GM, Walter WK et al (2004) Edge loading in third generation alumina ceramic-on-ceramic bearings: Stripe wear. J Arthroplasty 19:402–413PubMedCrossRefGoogle Scholar
  57. 57.
    Willert HG, Semlitsch M (1977) Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res 11:157–164PubMedCrossRefGoogle Scholar
  58. 58.
    Wooley PH, Morren R, Andary J et al (2002) Inflammatory responses to orthopaedic biomaterials in the murine air pouch. Biomaterials 23:517–526PubMedCrossRefGoogle Scholar
  59. 59.
    Zysk SP, Gebhard H, Plitz W et al (2004) Influence of orthopedic particulate biomaterials on inflammation and synovial microcirculation in the murine knee joint. J Biomed Mater Res B Appl Biomater 71:108–115PubMedCrossRefGoogle Scholar
  60. 60.
    Zysk SP, Gebhard HH, Kalteis T et al (2005) Particles of all sizes provoke inflammatory responses in vivo. Clin Orthop Relat Res (433):258–264CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • J.P. Kretzer
    • 1
  • C. Zietz
    • 2
  • C. Schröder
    • 3
  • J. Reinders
    • 1
  • L. Middelborg
    • 2
  • A. Paulus
    • 3
  • R. Sonntag
    • 1
  • R. Bader
    • 2
  • S. Utzschneider
    • 3
  1. 1.Labor für Biomechanik und Implantatforschung, Klinik für Orthopädie und UnfallchirurgieUniversitätsklinikum HeidelbergHeidelbergDeutschland
  2. 2.Forschungslabor für Biomechanik und ImplantattechnologieOrthopädische Klinik und Poliklinik der Universität RostockRostockDeutschland
  3. 3.Orthopädische Klinik und PoliklinikKlinikum der Ludwig-Maximilians-Universität München, Campus GroßhadernMünchenDeutschland

Personalised recommendations