Skip to main content
Log in

Muskelverletzungen: Diagnostik und Behandlungen

Muscle injuries: diagnostics and treatments

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Muskelverletzungen sind häufige Verletzungen im Sport und erfordern aufgrund der heutigen Gesellschaft eine effektive suffiziente Behandlung. Hervorgerufen durch akute oder chronische Überbelastung und fehlende Muskelkoordination handelt es sich dabei hauptsächlich um Prellungen und Zerrungen. Eine rechtzeitige Hämatombegrenzung und adäquate Erstbehandlung sind die Grundpfeiler einer kurzen Verletzungsausfallzeit. Im richtigen Timing zwischen Immobilisation und Remobilisation bzw. Progredienz der Remobilisation besteht der Schlüssel für eine optimierte Therapie. In ausgewählten bzw. schweren Fällen ist eine operative Therapie notwendig. Die Muskelreparatur lässt sich durch bestimmte adjuvante Therapien möglicherweise verkürzen, wobei nicht einzelne Phasen übersprungen, sondern alle physiologischen Wundheilungsphasen durch einen extern induzierten höheren Umsatz beschleunigt durchlaufen werden sollten.

Abstract

Muscle injuries are common in sports. They are usually caused by either acute (mostly eccentric mechanisms) or chronic overloading with a lack of muscle coordination. They present in clinical practice as bruises and muscle sprains. Due to the rigours of a modern society and the high economic cost of time off work, an effective treatment needs to be employed. The key to an optimised therapy rests in the appropriate timing between immobilisation and mobilisation. The interval to muscle repair might be shortened by certain adjuvant therapies. In doing so, it is important that no physiological phases of wound healing are overlooked. Muscle healing can be accelerated by externally induced higher metabolic turnover. Surgical therapy is sometimes necessary in selected cases and in serious injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Aärimaa V, Rantanen J, Best T et al (2004) Mild eccentric stretch injury in skeletal muscle causes transient effects on tensile load and cell proliferation. Scand J Med Sci Sports 14(6):367–372

    Article  PubMed  Google Scholar 

  2. Akuthota V, Ferreiro A, Moore T et al (2008) Core stability exercise principles. Curr Sports Med Rep 7(1):39–44

    PubMed  Google Scholar 

  3. Allen GM, Wilson DJ (2007) Ultrasound in sports medicine – a critical evaluation. Eur J Radiol 62(1):79–85

    Article  PubMed  Google Scholar 

  4. Almekinders LC (1991) Results of surgical repair versus splinting of experimentally transected muscle. J Orthop Trauma 5(2):173–176

    Article  CAS  PubMed  Google Scholar 

  5. Arnason A, Gudmundsson A, Dahl HA et al (2008) Prevention of hamstring strains in elite soccer: an intervention study. Scand J Med Sci Sports 18(1):40–48

    Article  CAS  PubMed  Google Scholar 

  6. Balius R, Maestro A, Pedret C et al (2009) Central aponeurosis tears of the rectus femoris: practical sonographic prognosis. Br J Sports Med 43(11):818–824

    Article  CAS  PubMed  Google Scholar 

  7. Beiner JM, Jokl P (2001) Muscle contusion injuries: current treatment options. J Am Acad Orthop Surg 9(4):227–237

    CAS  PubMed  Google Scholar 

  8. Best TM, Shehadeh SE, Leverson G et al (2001) Analysis of changes in mRNA levels of myoblast- and fibroblast-derived gene products in healing skeletal muscle using quantitative reverse transcription-polymerase chain reaction. J Orthop Res 19(4):565–572

    Article  CAS  PubMed  Google Scholar 

  9. Bleakley C, McDonough S, MacAuley D (2004) The use of ice in the treatment of acute soft-tissue injury: a systematic review of randomized controlled trials. Am J Sports Med 32(1):251–261

    Article  PubMed  Google Scholar 

  10. Bleakley CM, Davison GW (2010) What is the biochemical and physiological rationale for using cold-water immersion in sports recovery? A systematic review. Br J Sports Med 44(3):179–187

    Article  PubMed  Google Scholar 

  11. Borg-Stein J, Zaremski JL, Hanford MA (2009) New concepts in the assessment and treatment of regional musculoskeletal pain and sports injury. PM R 1(8):744–754

    PubMed  Google Scholar 

  12. Burkin DJ, Kaufman SJ (1999) The alpha7beta1 integrin in muscle development and disease. Cell Tissue Res 296(1):183–190

    Article  CAS  PubMed  Google Scholar 

  13. Caine D, Singer K, Roy S (2006) Physeal injuries in children’s and youth sports: reasons for concern? Br J Sports Med 40(9):749–760

    Article  CAS  PubMed  Google Scholar 

  14. Chargé SBP, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84(1):209–238

    Article  PubMed  Google Scholar 

  15. Crisco JJ, Jokl P, Heinen GT et al (1996) Maximal contraction lessens impact response in a muscle contusion model. J Biomech 29(10):1291–1296

    Article  CAS  PubMed  Google Scholar 

  16. Crisco JJ, Jokl P, Heinen GT et al (1994) A muscle contusion injury model. Biomechanics, physiology, and histology. Am J Sports Med 22(5):702–710

    Article  CAS  PubMed  Google Scholar 

  17. Curatolo M, Arendt-Nielsen L, Petersen-Felix S (2006) Central hypersensitivity in chronic pain: mechanisms and clinical implications. Phys Med Rehabil Clin North Am 17(2):287–302

    Google Scholar 

  18. De Smet AA, Best TM (2000) MR imaging of the distribution and location of acute hamstring injuries in athletes. Am J Roentgenol 174(2):393–399

    Google Scholar 

  19. Deal DN, Tipton J, Rosencrance E et al (2002) Ice reduces edema. A study of microvascular permeability in rats. J Bone Joint Surg Am 84(9):1573–1578

    PubMed  Google Scholar 

  20. Engelhardt M (2006) Sportverletzungen – Diagnose, Management und Begleitmaßnahmen. Elsevier -Urban & Fischer, München

  21. Farges M-C, Balcerzak D, Fisher BD et al (2002) Increased muscle proteolysis after local trauma mainly reflects macrophage-associated lysosomal proteolysis. Am J Physiol Endocrinol Metab 282(2):326–335

    Google Scholar 

  22. Garrett WE Jr (1996) Muscle strain injuries. Am J Sports Med 24(Suppl 6):2–8

    Article  Google Scholar 

  23. Garrett WE Jr (1990) Muscle strain injuries: clinical and basic aspects. Med Sci Sports Exerc 22(4):436–443

    PubMed  Google Scholar 

  24. Garrett WE Jr, Safran MR, Seaber AV et al (1987) Biomechanical comparison of stimulated and nonstimulated skeletal muscle pulled to failure. Am J Sports Med 15(5):448–454

    Article  PubMed  Google Scholar 

  25. Hasselman CT, Best TM, Hughes C et al (1995) An explanation for various rectus femoris strain injuries using previously undescribed muscle architecture. Am J Sports Med 23(4):493–499

    Article  CAS  PubMed  Google Scholar 

  26. Hibbs AE, Thompson K, French D et al (2008) Optimizing performance by improving core stability and core strength. Sports Med 38(12):995–1008

    Article  PubMed  Google Scholar 

  27. Hoffmann A, Gross G (2009) Innovative strategies for treatment of soft tissue injuries in human and animal athletes. Med Sport Sci 54:150–165

    Article  CAS  PubMed  Google Scholar 

  28. Hoffmann A, Gross G (2006) Tendon and ligament engineering: from cell biology to in vivo application. Regen Med 1(4):563–574

    Article  CAS  PubMed  Google Scholar 

  29. Hurme T, Kalimo H, Lehto M et al (1991) Healing of skeletal muscle injury: an ultrastructural and immunohistochemical study. Med Sci Sports Exerc 23(7):801–810

    CAS  PubMed  Google Scholar 

  30. Järvinen M (1976) Healing of a crush injury in rat striated muscle. 4. Effect of early mobilization and immobilization on the tensile properties of gastrocnemius muscle. Acta Chir Scand 142(1):47–56

    PubMed  Google Scholar 

  31. Järvinen MJ, Einola SA, Virtanen EO (1992) Effect of the position of immobilization upon the tensile properties of the rat gastrocnemius muscle. Arch Phys Med Rehabil 73(3):253–257

    PubMed  Google Scholar 

  32. Järvinen MJ (1993) The effects of early mobilisation and immobilisation on the healing process following muscle injuries. Sports Med 15(2):78–89

    Article  PubMed  Google Scholar 

  33. Järvinen TAH, Kannus P, Józsa L et al (2000) Tenascin-C in the pathobiology and healing process of musculoskeletal tissue injury. Scand J Med Sci Sports 10(6):376–382

    Article  PubMed  Google Scholar 

  34. Järvinen TAH, Järvinen TL, Kääriäinen M et al (2007) Muscle injuries: optimising recovery. Best Pract Res Clin Rheumatol 21(2):317–331

    Article  PubMed  Google Scholar 

  35. Järvinen TAH, Järvinen TLN, Kääriäinen M et al (2005) Muscle injuries: biology and treatment. Am J Sports Med 33(5):745–764

    Article  PubMed  Google Scholar 

  36. Kääriäinen M, Järvinen T, Järvinen M (2000) Relation between myofibers and connective tissue during muscle injury repair. Scand J Med Sci Sports 10(6):332–337

    Article  PubMed  Google Scholar 

  37. Kääriäinen M, Kääriäinen J, Järvinen TLN et al (2000) Integrin and dystrophin associated adhesion protein complexes during regeneration of shearing-type muscle injury. Neuromuscul Disord 10(2):121–132

    Article  PubMed  Google Scholar 

  38. Kujala UM, Orava S, Jarinen M (1997) Hamstring injuries. Current trends in treatment and prevention. Sports Med 23(6):397–404

    Article  CAS  PubMed  Google Scholar 

  39. Kvist M, Järvinen M (1982) Clinical, histochemical and biomechanical features in repair of muscle and tendon injuries. Int J Sports Med 3(Suppl 1):12–14

    Article  PubMed  Google Scholar 

  40. Lamb SE, Marsh JL, Hutton JL et al (2009) Mechanical supports for acute, severe ankle sprain: a pragmatic, multicentre, randomised controlled trial. Lancet 373(9663):575–581

    Article  CAS  PubMed  Google Scholar 

  41. Lehto M, Duance VC, Restall D (1985) Collagen and fibronectin in a healing skeletal muscle injury. An immunohistological study of the effects of physical activity on the repair of injured gastrocnemius muscle in the rat. J Bone Joint Surg Br 67(5):820–828

    CAS  PubMed  Google Scholar 

  42. Li Y, Huard J (2002) Differentiation of muscle-derived cells into myofibroblasts in injured skeletal muscle. Am J Pathol 161(3):895–907

    PubMed  Google Scholar 

  43. Maas M, Pluim BM, de Jonge MC et al (2009) Imaging techniques in sports medicine. Ned Tijdschr Geneeskd B 153:409

    Google Scholar 

  44. McNeil PL (2002) Repairing a torn cell surface: make way, lysosomes to the rescue. J Cell Sci 115(5):873–879

    CAS  PubMed  Google Scholar 

  45. Mehallo CJ, Drezner JA, Bytomski JR (2006) Practical management: nonsteroidal antiinflammatory drug (NSAID) use in athletic injuries. Clin J Sport Med 16(2):170–174

    Article  PubMed  Google Scholar 

  46. Menetrey J, Kasemkijwattana C, Fu FH et al (1999) Suturing versus immobilization of a muscle laceration. A morphological and functional study in a mouse model. Am J Sports Med 27(2):222–229

    CAS  PubMed  Google Scholar 

  47. Mueller-Wohlfahrt HW, Ueblacker P, Haensel L (2010) Muskelverletzungen im Sport. Thieme, Stuttgart

  48. Sallay PI, Friedman RL, Coogan PG. Garrett WE (1996) Hamstring muscle injuries among water skiers. Functional outcome and prevention. Am J Sports Med 24(2):130–136

    Article  CAS  PubMed  Google Scholar 

  49. Shelly MJ, Hodnett PA, MacMahon PJ et al (2009) MR imaging of muscle injury. Magn Reson Imaging Clin North Am 17(4):757–773

    Article  Google Scholar 

  50. Slavotinek JP, Barnes PG (2002) Hamstring injury in athletes: using MR imaging measurements to compare extent of muscle injury with amount of time lost from competition. Am J Roentgenol 179(6):1621–1628

    Google Scholar 

  51. Smith J, Finnoff JT (2009) Diagnostic and interventional musculoskeletal ultrasound: part 1. Fundamentals. PM R 1(1):64–75

    PubMed  Google Scholar 

  52. Smith TL, Curl WW, Smith BP et al (1993) New skeletal muscle model for the longitudinal study of alterations in microcirculation following contusion and cryotherapy. Microsurgery 14(8):487–493

    Article  CAS  PubMed  Google Scholar 

  53. Stević R, Masulović D (2009) Ultrasound diagnostics of muscle and tendon injuries. Srp Arh Celok Lek 137(11–12):647–652

    Google Scholar 

  54. Takala TE, Virtanen P (2000) Biochemical composition of muscle extracellular matrix: the effect of loading. Scand J Med Sci Sports 10(6):321–325

    Article  CAS  PubMed  Google Scholar 

  55. Thorsson O, Hemdal B, Lilja B, Westlin N (1987) The effect of external pressure on intramuscular blood flow at rest and after running. Med Sci Sports Exerc 19(5):469–473

    CAS  PubMed  Google Scholar 

  56. Thorsson O, Lilja B, Ahlgren L et al (1985) The effect of local cold application on intramuscular blood flow at rest and after running. Med Sci Sports Exerc 17(6):710–713

    Article  CAS  PubMed  Google Scholar 

  57. Tidball JG (1991) Force transmission across muscle cell membranes. J Biomech 24(Suppl 1): 43–52

    Article  PubMed  Google Scholar 

  58. Tidball JG, Daniel TL (1986) Myotendinous junctions of tonic muscle cells: structure and loading. Cell Tissue Res 245(2):315–322

    Article  CAS  PubMed  Google Scholar 

  59. Toumi H, Best TM (2003) The inflammatory response: friend or enemy for muscle injury? Br J Sports Med 37(4):284–286

    Article  CAS  PubMed  Google Scholar 

  60. Vaittinen S, Lukka R, Sahlgren C et al (2001) The expression of intermediate filament protein nestin as related to vimentin and desmin in regenerating skeletal muscle. J Neuropathol Exp Neurol 60(6):588–597

    CAS  PubMed  Google Scholar 

  61. Vaittinen S, Hurme T, Rantanen J et al (2002) Transected myofibres may remain permanently divided in two parts. Neuromuscul Disord 12(6):584–587

    Article  PubMed  Google Scholar 

  62. Willardson JM (2007) Core stability training: applications to sports conditioning programs. J Strength Cond Res 21(3):979–985

    PubMed  Google Scholar 

  63. Wright-Carpenter T, Opolon P, Appell HJ et al (2004) Treatment of muscle injuries by local administration of autologous conditioned serum: animal experiments using a muscle contusion model. Int J Sports Med 25(8):582–587

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Engelhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kieb, M., Lorbach, O. & Engelhardt, M. Muskelverletzungen: Diagnostik und Behandlungen. Orthopäde 39, 1098–1107 (2010). https://doi.org/10.1007/s00132-010-1693-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-010-1693-2

Schlüsselwörter

Keywords

Navigation